A cooperative study led by the U.S. Geological Survey and Wake County Environmental Services was initiated to characterize the fractured-rock aquifer system and assess the sustainability of groundwater resources in and around Wake County. This report contributes to the development of a comprehensive groundwater budget for the study area, thereby helping to enable resource managers to make sound and sustainable water-supply and water-use decisions.
Construction information was used to analyze the well depth, casing depth, and reported well yield of more than 7,500 inventoried wells. The median well depth and casing depth were 265 feet (ft) below land surface (bls) and 68 ft bls, respectively, and the median well yield was 10 gallons per minute. Generally, well yield increased with depth to around 200 ft bls and then began to decrease with depth within the fractured-rock aquifer.
Borehole geophysical logging methods were used to characterize the fractured-rock aquifer by mapping the orientation of geologic structures within the subsurface. Structure measurements were made on resulting log data and mapped to observed general spatial trends within the regional groundwater system and more distinct hydrogeologic units. Many of the fractures observed within the borehole logs are steeply dipping across Wake County, although open fractures with shallow dip angles were also observed in most rock classes. Regional geologic structural trends were observed in proximity to the Jonesboro Fault.
Potential groundwater recharge in the study area was estimated using a Soil-Water-Balance (SWB) model, as well as using base flow hydrograph separation. The SWB model calculated net infiltration below the root zone for 1981 through 2019 for a 5,402-square-mile area that extends to the counties surrounding Wake County. The mean annual net infiltration rate for the 39-year period was about 8.6 inches per year for the study area. The mean annual net infiltration results from the SWB model were comparable to annual base flow estimates using the PART hydrograph-separation method at six U.S. Geological Survey streamgages within the study area. Mean annual base flow for all six drainage basins was near 7.5 inches per year and estimates ranged from 2.9 to 8.9 inches. Comparisons of mean annual potential recharge from the SWB model and base flow estimates were generally within 2 inches, except during high flows for most of the drainage basins in the study area.
Citation Information
Publication Year | 2022 |
---|---|
Title | Assessment of well yield, dominant fractures, and groundwater recharge in Wake County, North Carolina |
DOI | 10.3133/sir20225041 |
Authors | Dominick J. Antolino, Laura N. Gurley |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2022-5041 |
Index ID | sir20225041 |
Record Source | USGS Publications Warehouse |
USGS Organization | South Atlantic Water Science Center |
Related Content
Soil-Water-Balance (SWB) model datasets for the Greater Wake County area, North Carolina, 1981-2019
Groundwater Well Yield in Wake County, North Carolina
National Land Cover Database (NLCD) 2016 Products (ver. 3.0, November 2023)
Related Content
- Data
Soil-Water-Balance (SWB) model datasets for the Greater Wake County area, North Carolina, 1981-2019
A Soil-Water-Balance (SWB) model was developed to estimate annual net infiltration below the root-zone for the Greater Wake County area, North Carolina for the period 1981 through 2019. The model was developed as part of a study to assess groundwater availability in the fractured-rock aquifers underlying Wake County. Curve number, maximum net infiltration rate, and root-zone depth parameters for aGroundwater Well Yield in Wake County, North Carolina
The U.S. Geological Survey, in cooperation with Wake County Environmental Services, initiated a comprehensive groundwater resource investigation to better understand the quantity and quality of groundwater in Wake County, North Carolina. In 2020, as part of the investigation, groundwater records were compiled electronically from 7,689 wells in and within five miles of Wake County and groundwater yNational Land Cover Database (NLCD) 2016 Products (ver. 3.0, November 2023)
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released four National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, and 2011. These products provide spatially explicit and reliable information on the Nation�s land cover and land cover change. To continue the legacy of NLCD and further establish a long-ter - Connect