Skip to main content
U.S. flag

An official website of the United States government

A component-resampling approach for estimating probability distributions from small forecast ensembles

January 1, 2006

In many meteorological and climatological modeling applications, the availability of ensembles of predictions containing very large numbers of members would substantially ease statistical analyses and validations. This study describes and demonstrates an objective approach for generating large ensembles of "additional" realizations from smaller ensembles, where the additional ensemble members share important first-and second-order statistical characteristics and some dynamic relations within the original ensemble. By decomposing the original ensemble members into assuredly independent time-series components (using a form of principal component decomposition) that can then be resampled randomly and recombined, the component-resampling procedure generates additional time series that follow the large and small scale structures in the original ensemble members, without requiring any tuning by the user. The method is demonstrated by applications to operational medium-range weather forecast ensembles from a single NCEP weather model and application to a multi-model, multi-emission-scenarios ensemble of 21st Century climate-change projections. ?? Springer 2006.

Publication Year 2006
Title A component-resampling approach for estimating probability distributions from small forecast ensembles
DOI 10.1007/s10584-005-9001-6
Authors M. Dettinger
Publication Type Article
Publication Subtype Journal Article
Series Title Climatic Change
Index ID 70030839
Record Source USGS Publications Warehouse
USGS Organization San Francisco Bay-Delta; Pacific Regional Director's Office
Was this page helpful?