Skip to main content
U.S. flag

An official website of the United States government

Cone penetration test and soil boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California

May 20, 2009

Aquifer-system deformation associated with ground-water-level changes is being investigated cooperatively by the U.S. Geological Survey (USGS) and the East Bay Municipal Utility District (EBMUD) at the Bayside Groundwater Project (BGP) near the modern San Francisco Bay shore in San Lorenzo, California. As a part of this project, EBMUD has proposed an aquifer storage and recovery (ASR) program to store and recover as much as 3.78x104 m3/d of water. Water will be stored in a 30-m sequence of coarse-grained sediment (the 'Deep Aquifer') underlying the east bay alluvium and the adjacent ground-water basin. Storing and recovering water could cause subsidence and uplift at the ASR site and adjacent areas because the land surface will deform as aquifers and confining units elastically expand and contract with ASR cycles. The Deep Aquifer is overlain by more than 150 m of clayey fine-grained sediments and underlain by comparable units. These sediments are similar to the clayey sediments found in the nearby Santa Clara Valley, where inelastic compaction resulted in about 4.3 m of subsidence near San Jose from 1910 to 1995 due to overdraft of the aquifer. The Deep Aquifer is an important regional resource, and EBMUD is required to demonstrate that ASR activities will not affect nearby ground-water management, salinity levels, or cause permanent land subsidence. Subsidence in the east bay area could induce coastal flooding and create difficulty conveying winter storm runoff from urbanized areas. The objective of the cooperative investigation is to monitor and analyze aquifer-system compaction and expansion, as well as consequent land subsidence and uplift resulting from natural causes and any anthropogenic causes related to ground-water development and ASR activities at the BGP. Therefore, soil properties related to compressibility (and the potential for deformation associated with ground-water-level changes) are of the most concern.

To achieve this objective, 3 boreholes were drilled at the BGP for the purpose of monitoring pore-fluid pressure changes and aquifer-system deformation. One 308-m deep borehole contains six piezometers, the other two boreholes are 182 and 299 m deep and contain a dual-stage extensometer. To investigate the physical properties of the sediments, two phases of subsurface exploration were conducted. In the first phase, a USGS drilling crew obtained numerous core samples, 5.8 cm in diameter by 1.5 m long. The samples were extracted between July 28, 2006, and August 5, 2006; nine samples were tested for this study at the USGS soils laboratory in Menlo Park, California.

Phase two began on June 22, 2006, when a seismic cone penetration test (SCPT) sounding was made to a depth of 32.3 m. Additional field work was completed May 8, 2007, with a hollow-stem auger boring that took continuous 9.8-cm-diameter samples from the depth interval of 6.1 to 10.7 m to supplement poor recovery from the first phase of sampling. These samples were also tested in the soils laboratory at the USGS.

Publication Year 2009
Title Cone penetration test and soil boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California
DOI 10.3133/ofr20091050
Authors Michael J. Bennett, Michelle Sneed, Thomas E. Noce, John C. Tinsley
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2009-1050
Index ID ofr20091050
Record Source USGS Publications Warehouse
USGS Organization Earthquake Hazards Program; Earthquake Science Center