Skip to main content
U.S. flag

An official website of the United States government

Crude oil at the Bemidji Site: 25 years of monitoring, modeling, and understanding

January 21, 2011

The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump‐and‐skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore‐scale capillary pressure‐saturation hysteresis and the presence of fine‐grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound‐specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field‐scale reaction rates and hydrocarbon mass balance. Long‐term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap‐shot study of a hydrocarbon plume may not provide information that is of relevance to the long‐term behavior of the plume during natural attenuation.

Publication Year 2011
Title Crude oil at the Bemidji Site: 25 years of monitoring, modeling, and understanding
DOI 10.1111/j.1745-6584.2009.00654.x
Authors Hedeff I. Essaid, Barbara A. Bekins, William N. Herkelrath, Geoffrey N. Delin
Publication Type Article
Publication Subtype Journal Article
Series Title Ground Water
Index ID 70207955
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program