Skip to main content
U.S. flag

An official website of the United States government

Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979

January 1, 1980

Kilauea Iki lava lake formed during the 1959 summit eruption, one of the most picritic eruptions of Kilauea Volcano in the twentieth century. Since 1959 the 110 to 122 m thick lake has cooled slowly, developing steadily thickening upper and lower crusts, with a lens of more molten lava in between. Recent coring dates, with maximum depths reached in the center of the lake, are: 1967 (26.5 m). 1975 (44.2 m), 1976 (46.0 m) and 1979 (52.7 m). These depths define the base of the upper crust at the time of drilling. The bulk of the core consists of a gray, olivine-phyric basalt matrix, which locally contains coarser-grained diabasic segregation veins. The most important megascopic variation in the matrix rock is its variation in olivine content. The upper 15 m of crust is very olivine-rich. Abundance and average size of olivine decrease irregularly downward to 23 m; between 23 and 40 m the rock contains 5-10% of small olivine phenocrysts. Below 40 m. olivine content and average grainsize rise sharply. Olivine contents remain high (20-45%, by volume) throughout the lower crust, except for a narrow (< 6 m) olivine depleted zone near the basalt contact. Petrographically the olivine phenocrysts in Kilauea Iki can be divided into two types. Type 1 phenocrysts are large (1-12 mm long), with irregular blocky outlines, and often contain kink bands. Type 2 crystals are relatively small (0.5-2 mm in length), euhedral and undeformed. The variations in olivine content of the matrix rock are almost entirely variations in the amount of type 1 olivines. Sharp mineral layering of any sort is rare in Kilauea Iki. However, the depth range 41-52 m is marked by the frequent occurrence of steeply dipping (70??-90??) bands or bodies of slightly vuggy olivine-rich rock locally capped with a small cupola of segregation-vein material. In thin section there is clear evidence for relative movement of melt and crystals within these structures. The segregation veins occur only in the upper crust. The most widely distributed (occurring from 4.5-59.4 m) are thin veins (most < 5 cm thick), which cut the core at moderate angles and appear to have been derived from the immediately adjacent wall-rock by filter pressing. There is also a series of thicker (0.1-1.5 m) segregation veins, which recur every 2-3 m, between 20 and 52 m. These have subhorizontal contacts and appear, from similarities in thickness and spacing, to correlate between drill holes as much as 100 m apart. These large veins are not derived from the adjacent wallrock: their mechanism of formation is still problematical. The total thickness of segregation veins in Kilauea Iki is 3-6 m in the central part of the lake, corresponding to 6-11% of the upper crust. Whole-rock compositions for Kilauea Iki fall into two groups: the matrix rock ranges from 20-7.5% MgO, while the segregation veins all contain between 6.0 and 4.5% MgO. There are no whole-rock compositions of intermediate MgO content. Samples from < 12 m show eruption-controlled chemistry. Below that depth, matrix rock compositions have higher Al2O3, TiO2 and alkalies, and lower CaO and FeO, at a given MgO content than do the eruption pumices. The probable causes of this are assimilation of low-melting components from foundered crust, plus removal of olivine, plus removal of minor augite, for rocks with MgO contents of < 8.0%. Given the observed rate of growth of the upper crust, one can infer that significant removal of the type 1 olivine phenocrysts from the upper part of the lake began in 1963 and ceased sometime prior to 1972. The process. probably gravitative settling, appears to have been inhibited earlier by gas streaming from the lower part of the lens of melt. The olivine cumulate zone, which extends into the upper crust, contains relatively few (25-40%) olivine crystals, few of which actually touch each other. The diffuseness of the cumulate zone raises the possibility that the crystals were coated with a relatively visous boundary layer

Publication Year 1980
Title Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979
DOI 10.1007/BF02600365
Authors Rosalind Tuthill Helz
Publication Type Article
Publication Subtype Journal Article
Series Title Bulletin Volcanologique
Index ID 70012111
Record Source USGS Publications Warehouse