Skip to main content
U.S. flag

An official website of the United States government

Damage amplification during repetitive seismic waves in mechanically loaded rocks

January 23, 2023

Cycles of stress build-up and release are inherent to tectonically active planets. Such stress oscillations impart strain and damage, prompting mechanically loaded rocks and materials to fail. Here, we investigate, under uniaxial conditions, damage accumulation and weakening caused by time-dependent creep (at 60, 65, and 70% of the rocks’ expected failure stress) and repeating stress oscillations (of ± 2.5, 5.0 or 7.5% of the creep load), simulating earthquakes at a shaking frequency of ~ 1.3 Hz in volcanic rocks. The results show that stress oscillations impart more damage than constant loads, occasionally prompting sample failure. The magnitudes of the creep stresses and stress oscillations correlate with the mechanical responses of our porphyritic andesites, implicating progressive microcracking as the cause of permanent inelastic strain. Microstructural investigation reveals longer fractures and higher fracture density in the post-experimental rock. We deconvolve the inelastic strain signal caused by creep deformation to quantify the amount of damage imparted by each individual oscillation event, showing that the magnitude of strain is generally largest with the first few oscillations; in instances where pre-existing damage and/or the oscillations’ amplitude favour the coalescence of micro-cracks towards system scale failure, the strain signal recorded shows a sharp increase as the number of oscillations increases, regardless of the creep condition. We conclude that repetitive stress oscillations during earthquakes can amplify the amount of damage in otherwise mechanically loaded materials, thus accentuating their weakening, a process that may affect natural or engineered structures. We specifically discuss volcanic scenarios without wholesale failure, where stress oscillations may generate damage, which could, for example, alter pore fluid pathways, modify stress distribution and affect future vulnerability to rupture and associated hazards.

Citation Information

Publication Year 2023
Title Damage amplification during repetitive seismic waves in mechanically loaded rocks
DOI 10.1038/s41598-022-26721-x
Authors Anthony Lamur, Jackie E. Kendrick, Lauren N. Schaefer, Yan Lavallée, Ben M. Kennedy
Publication Type Article
Publication Subtype Journal Article
Series Title Scientific Reports
Index ID 70239880
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center

Related Content