This is the second of two papers that describe how data mining can aid natural-resource managers with the difficult problem of controlling the interactions between hydrologic and man-made systems. Data mining is a new science that assists scientists in converting large databases into knowledge, and is uniquely able to leverage the large amounts of real-time, multivariate data now being collected for hydrologic systems. Part 1 gives a high-level overview of data mining, and describes several applications that have addressed major water resource issues in South Carolina. This Part 2 paper describes how various data mining methods are integrated to produce predictive models for controlling surface- and groundwater hydraulics and quality. The methods include: - signal processing to remove noise and decompose complex signals into simpler components; - time series clustering that optimally groups hundreds of signals into "classes" that behave similarly for data reduction and (or) divide-and-conquer problem solving; - classification which optimally matches new data to behavioral classes; - artificial neural networks which optimally fit multivariate data to create predictive models; - model response surface visualization that greatly aids in understanding data and physical processes; and, - decision support systems that integrate data, models, and graphics into a single package that is easy to use.