Degradation of 100‐m‐scale rocky ejecta craters at the InSight Landing Site on Mars and implications for surface processes and erosion rates in the hesperian and amazonian
Rocky ejecta craters (RECs) at the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) landing site on Elysium Planitia, Mars, provide constraints on crater modification and rates for the Hesperian and Amazonian. The RECs are between 10 m and 1.2 km in diameter and exhibit five classes of preservation. Class 1 represents pristine craters with sharp rims and abundant ejected rocks. From Classes 2 to 5, rims become more subdued, craters are infilled, and the ejecta become discontinuously distributed. High‐Resolution Imaging Science Experiment digital elevation models indicate a maximum depth to diameter ratio of ~0.15, which is lower than pristine models for craters of similar size. The low ratio is related to the presence of a loosely consolidated regolith and early‐stage eolian infill. Rim heights have an average height to diameter ratio of ~0.03 for the most pristine class. The size‐frequency distribution of RECs, plotted using cumulative and differential methods, indicates that crater classes within the diameter range of 200 m to 1.2 km are separated by ~100 to 200 Myr. Smaller craters degrade faster, with classes separated by
Citation Information
| Publication Year | 2018 |
|---|---|
| Title | Degradation of 100‐m‐scale rocky ejecta craters at the InSight Landing Site on Mars and implications for surface processes and erosion rates in the hesperian and amazonian |
| DOI | 10.1029/2018JE005618 |
| Authors | J. Sweeney, N. Warner, V. Ganti, Matthew Golombek, M. Lamb, Robin Fergason, Randolph Kirk |
| Publication Type | Article |
| Publication Subtype | Journal Article |
| Series Title | Journal of Geophysical Research - Planets |
| Index ID | 70216314 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Astrogeology Science Center |