Skip to main content
U.S. flag

An official website of the United States government

Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

June 26, 2012

Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce sufficiently accurate estimates of sediment loads. Finally, conventional suspended-sediment measurements are both labor and cost intensive and may not be possible at the resolution required to resolve discharge-independent changes in suspended-sediment concentration, especially in more remote locations. For these reasons, the U.S. Geological Survey has pursued the use of surrogate technologies (such as acoustic and laser diffraction) for providing higher-resolution measurements of suspended-sediment concentration and grain size than are possible by using conventional suspended-sediment measurements alone. These factors prompted the U.S. Geological Survey's Grand Canyon Monitoring and Research Center to design and construct a network to automatically measure suspended-sediment transport at 15-minute intervals by using acoustic and laser-diffraction surrogate technologies at remote locations along the Colorado River within Marble and Grand Canyons in Grand Canyon National Park. Because of the remoteness of the Colorado River in this reach, this network also included the design of a broadband satellite-telemetry system to communicate with the instruments deployed at each station in this network. Although the sediment-transport monitoring network described in this report was developed for the Colorado River in Grand Canyon National Park, the design of this network can easily be adapted for use on other rivers, no matter how remote. In the Colorado River case-study example described in this report, suspended-sediment concentration and grain size are measured at five remote stations. At each of these stations, surrogate measurements of suspended-sediment concentration and grain size are made at 15-minute intervals using an array of different single-frequency acoustic-Doppler side-looking profilers. Laser-diffraction instruments are also used at two of these stations to measure both suspended-sediment concentrations and grain-size distributions. Cross-section calibrations of these instruments have been constructed and verified by using either equal-discharge-increment (EDI) or equal-width-increment (EWI) measurements of the velocity-weighted suspended-sediment concentration and grain-size distribution. The suspended-silt-and-clay concentration parts of these calibration relations have also included information from EDI- or EWI-calibrated samples collected by automatic pump samplers. Three of the monitoring stations are equipped with two-way satellite broadband telemetry systems that operate once a day to remotely monitor and program the instruments and download data. Data from these stations are typically downloaded twice per month; data from stations without satellite-telemetry systems are downloaded during site visits, which occur every 2 months or semiannually, depending on the remoteness of the site. Upon downloading and processing, suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size are posted on the World Wide Web. Satellite telemetry in combination with the high-resolution sediment surrogate measurements can generate near-real-time suspended-sediment-concentration and grain-size data (limited only by the time required to download the instruments and process the data). The approach for measuring suspended-sediment concentration and grain size using this monitoring network is more practical, and can be done at a much lower cost and with higher temporal resolution, than any other method.

Publication Year 2012
Title Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River
DOI 10.3133/tm8C2
Authors Ronald E. Griffiths, David J. Topping, Timothy Andrews, Glenn E. Bennett, Thomas A. Sabol, Theodore S. Melis
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Techniques and Methods
Series Number 8-C2
Index ID tm8C2
Record Source USGS Publications Warehouse
USGS Organization Southwest Biological Science Center