Skip to main content
U.S. flag

An official website of the United States government

A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of the tick Amblyomma americanum (Acari: Ixodidae)

October 26, 2015

The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with site-specific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.

Publication Year 2016
Title A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of the tick Amblyomma americanum (Acari: Ixodidae)
DOI 10.1093/jme/tjv150
Authors Antoinette Ludwig, Howard S. Ginsberg, Graham J. Hickling, Nicholas H. Ogden
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Medical Entomology
Index ID 70157213
Record Source USGS Publications Warehouse
USGS Organization Patuxent Wildlife Research Center