Skip to main content
U.S. flag

An official website of the United States government

Effect of size-biased sampling on resource predictions from the three-part method for quantitative mineral resource assessment—A case study of the gold mines in the Timmins-Kirkland Lake area of the Abitibi greenstone belt, Canada:

March 14, 2019

The three-part method for quantitative mineral resource assessment is used by the U.S. Geological Survey to predict, within a specified assessment area, the number of undiscovered mineral deposits and the quantity of mineral resources in those undiscovered deposits. The effects of size-biased sampling on such predictions are evaluated in a case study that involves gold mines from the Timmins-Kirkland Lake area of the Abitibi greenstone belt, Canada. The gold mines are divided, based upon the time of the assessment, into two groups: existing mines and future mines. The total produced gold for the existing mines are used to predict, with the three-part method, the total produced gold for the future mines. Then the predictions are compared to the known, total produced gold for the future mines. For comparisons using the mean, the predictions are 1.6 to 12 times too high, depending upon the time of the assessment and the probability density function characterizing the total produced gold in the existing mines. For comparisons using the median, the predictions are 1.3 to 10 times too high, depending upon the time of the assessment. The reason for these excessively high predictions is that the three-part method is based on the assumption that the total produced gold from the existing mines is representative of the total produced gold in the future mines; this assumption is inappropriate because of size-biased sampling. There is reason to be concerned that size-biased sampling adversely affected the resource predictions of previous U.S. Geological Survey assessments that were conducted with the three-part method.