Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining.
Citation Information
Publication Year | 1981 |
---|---|
Title | Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana |
DOI | 10.3133/wri8138 |
Authors | Marcel P. Bergeron |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Water-Resources Investigations Report |
Series Number | 81-38 |
Index ID | wri8138 |
Record Source | USGS Publications Warehouse |
USGS Organization | Indiana Water Science Center |