Skip to main content
U.S. flag

An official website of the United States government

Effects of receiving-water quality and wastewater treatment on injury, survival, and regrowth of fecal-indicator bacteria and implications for assessment of recreational water quality

January 1, 1996

Bacterial injury, survival, and regrowth were investigated by use of replicate flow-through incubation chambers placed in the Cuyahoga River or Lake Erie in the greater Cleveland metropolitan area during seven 4-day field studies. The chambers contained wastewater or combined-sewer-overflow (CSO) effluents treated three ways-unchlorinated, chlorinated, and dechlorinated. At timestep intervals, the chamber contents were analyzed for concentrations of injured and healthy fecal coliforms by use of standard selective and enhanced-recovery membrane-filtration methods.

Mean percent injuries and survivals were calculated from the fecal-coliform concentration data for each field study. The results of analysis of variance (ANOVA) indicated that treatment affected mean percent injury and survival, whereas site did not. In the warm-weather Lake Erie field study, but not in the warm-weather Cuyahoga River studies, the results of ANOVA indicated that dechlorination enhanced the repair of injuries and regrowth of chlorine-injured fecal coliforms on culture media over chlorination alone. The results of ANOVA on the percent injury from CSO effluent field studies indicated that dechlorination reduced the ability of organisms to recover and regrow on culture media over chlorination alone. However, because of atypical patterns of concentration increases and decreases in some CSO effluent samples, more work needs to be done before the effect of dechlorination and chlorination on reducing fecal-coliform concentrations in CSO effluents can be confirmed. The results of ANOVA on percent survivals found statistically significant differences among the three treatment methods for all but one study. Dechlorination was found to be less effective than chlorination alone in reducing the survival of fecal coliforms in wastewater effluent, but not in CSO effluent.

If the concentration of fecal coliforms determined by use of the enhanced-recovery method can be predicted accurately from the concentration found by use of the standard method, then increased monitoring and expense to detect chlorine-injured organisms would be unnecessary. The results of linear regression analysis, however, indicated that the relation between enhanced-recovery and standard-method concentrations was best represented when the data were grouped by treatment. The model generated from linear regression of the unchlorinated data set provided an accurate estimate of enhanced-recovery concentrations from standard-method concentrations, whereas the models generated from the chlorinated and dechlorinated data sets did not. In addition, evaluation of fecal-coliform concentrations found in field studies in terms of Ohio recreational water-quality standards showed that concentrations obtained by standard and enhanced-recovery methods were not comparable. Sample treatment and analysis methods were found to affect the percentage of samples meeting and exceeding Ohio's bathing-water, primary-contact, and secondary-contact standards. Therefore, determining the health risk of swimming in receiving waters was often difficult without information on enhanced-recovery method concentrations and was especially difficult in waters receiving high proportions of chlorinated or dechlorinated effluents.

Publication Year 1996
Title Effects of receiving-water quality and wastewater treatment on injury, survival, and regrowth of fecal-indicator bacteria and implications for assessment of recreational water quality
DOI 10.3133/wri964199
Authors D.S. Francy, T.L. Hart, C.M. Virosteck
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 96-4199
Index ID wri964199
Record Source USGS Publications Warehouse