Skip to main content
U.S. flag

An official website of the United States government

Episodic soil succession on basaltic lava fields in a cool, dry environment

January 1, 2011

Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows <13 ka, very shallow organic soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

Publication Year 2011
Title Episodic soil succession on basaltic lava fields in a cool, dry environment
DOI 10.2136/sssaj2010.0341
Authors K.L. Vaughan, P.A. McDaniel, W.M. Phillips
Publication Type Article
Publication Subtype Journal Article
Series Title Soil Science Society of America Journal
Index ID 70032389
Record Source USGS Publications Warehouse
Was this page helpful?