Skip to main content
U.S. flag

An official website of the United States government

Estimated total phosphorus loads for selected sites on Great Lakes tributaries, water years 2014–2018

March 4, 2021

Monthly and annual total phosphorus loads were estimated for water years 2014 through 2018 for 23 streamgaged (gaged) sites on tributaries to the Great Lakes. Processing and regression methods described by Robertson and others (2018) were used with discrete and continuous data collected during water years 2011 and 2018 to update regression models for estimating instantaneous flux with the same form of equations as published by Robertson and others (2018). Monthly and water year average fluxes for all but two of the 23 gage sites were estimated using a weighted combination of results from surrogate models (which have streamflow, turbidity, and seasonal indicators as explanatory variables) and unit-value (UV)-flow models which have only UV streamflow and seasonal indicators as explanatory variables. Two of the gage sites had extensive periods of missing turbidity records, so average flux estimates for those stations were based solely on results from UV-flow models.

For most sites, estimated loads of total phosphorus were computed and summed for water years 2014–2018. The cumulative loads were used to compute yields and flow-weighted mean concentrations for water years 2014–2018. The estimated cumulative total phosphorus loads for water years 2014–2018 ranged from 112 to 11,500 metric tons. The Maumee River site (U.S. Geological Survey gage number 04193500) had the largest estimated cumulative load for water years 2014–2018 and the third largest estimated flow-weighted mean concentration. In fact, the estimated cumulative load at the Maumee River site was more than three times larger than the second largest estimated cumulative load.

Estimated average annual total phosphorus yields and flow-weighted mean concentrations for water years 2014–2018 ranged from 0.016 metric tons per square kilometer to 0.771 metric tons per square kilometer and 0.033 milligram per liter to 0.466 milligram per liter, respectively. The Cattaraugus Creek gage site (U.S. Geological Survey gage number 04213500) had the highest estimated average annual total phosphorus yield and flow-weighted mean concentration. The average annual total phosphorus yield at the Cattaraugus Creek gage site was almost twice as large as the second largest estimated yield.