Skip to main content
U.S. flag

An official website of the United States government

Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

June 6, 2008

Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.

Publication Year 2008
Title Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington
DOI 10.3133/sir20085078
Authors F. William Simonds, Peter W. Swarzenski, Donald O. Rosenberry, Christopher D. Reich, Anthony J. Paulson
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2008-5078
Index ID sir20085078
Record Source USGS Publications Warehouse
USGS Organization Washington Water Science Center