Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary
The ability of water-resource managers to adapt to future climatic change is especially challenging in coastal regions of the world. The East Coast of the United States falls into this category given the high number of people living along the Atlantic seaboard and the added strain on resources as populations continue to increase, particularly in the Southeast. Increased temperatures, changes in regional precipitation regimes, and potential increased sea level may have a great impact on existing hydrological systems in the region. The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga., and forms the state boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 238 miles upstream from the Atlantic Ocean, is responsible for most of the flow regulation that affects the Savannah River from Augusta, Ga., to the coast. The Savannah Harbor experiences semi-diurnal tides of two low and two high tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. Salinity intrusion results from the interaction of three principal forces - streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal streamgages in the Lower Savannah River Estuary, data-mining techniques were applied to over 15 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network (ANN) models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 9,850 square-mile Savannah River Basin were input into the model as time-delayed variables. Tidal inputs to the models were obtained by decomposing tidal water-level data into a “periodic” signal of tidal range and a “chaotic” signal of mean water levels. The ANN models were able to convincingly reproduce historical behaviors and generate alternative scenarios of interest. Important freshwater resources are located proximal to the freshwater-saltwater interface of the estuary. The Savannah National Wildlife Refuge is located in the upper portion of the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. Two municipal freshwater intakes are located upstream from the refuge. To evaluate the impact of climate change on salinity intrusion on these resources, inputs of streamflows and mean tidal water levels were modified to incorporate estimated changes in precipitation patterns and sea-level rise appropriate for the Southeastern United States. Changes in mean tidal water levels were changed parametrically for various sea-level rise conditions. Preliminary model results at the U.S. Geological Survey (USGS) Interstate-95 streamgage (station 02198840) for a 7½-year simulation show that historical daily salinity concentrations never exceeded 0.5 practical salinity units (psu). A 1-foot sea-level rise (ft, 30.5 centimeters [cm]) would increase the number of days of salinity concentrations greater than 0.5 psu to 47 days. A 2-ft (61 cm) sea-level rise would increase the number of days to 248.
Citation Information
Publication Year | 2010 |
---|---|
Title | Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary |
Authors | Paul Conrads, Edwin A. Roehl, Ruby C. Daamen, John B. Cook, Charles T. Sexton, Daniel L. Tufford, Gregory J. Carbone, Kristin Dow |
Publication Type | Conference Paper |
Publication Subtype | Conference Paper |
Index ID | 70156727 |
Record Source | USGS Publications Warehouse |
USGS Organization | South Atlantic Water Science Center |