Skip to main content
U.S. flag

An official website of the United States government

Evaluation of the Hydrolab HL4 water-quality sonde and sensors

December 18, 2017

The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility evaluated three Hydrolab HL4 multiparameter water-quality sondes by OTT Hydromet. The sondes were equipped with temperature, conductivity, pH, dissolved oxygen (DO), and turbidity sensors. The sensors were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors and to verify the validity of the manufacturer’s technical specifications. The conductivity sensors were evaluated for the accuracy of the specific conductance (SC) values (conductance at 25 degrees Celsius [oC]), that were calculated by using the vendor default method, Hydrolab Fresh. The HL4’s communication protocols and operating temperature range along with accuracy of the water-quality sensors were tested in a controlled laboratory setting May 1–19, 2016. To evaluate the sonde’s performance in a surface-water field application, an HL4 equipped with temperature, conductivity, pH, DO, and turbidity sensors was deployed June 20–July 22, 2016, at USGS water-monitoring site 02492620, Pearl River at National Space Technology Laboratories (NSTL) Station, Mississippi, located near Bay Saint Louis, Mississippi, and compared to the adjacent well-maintained EXO2 site sonde.

The three HL4 sondes met the USGS temperature testing criteria and the manufacturer’s technical specifications for temperature based upon the median room temperature difference between the measured and standard temperatures, but two of the three sondes exceeded the allowable difference criteria at the temperature extremes of approximately 5 and 40 ºC. Two sondes met the USGS criteria for SC. One of the sondes failed the criteria for SC when evaluated in a 100,000-microsiemens-per-centimeter (μS/cm) standard at room temperature, and also failed in a 10,000-μS/cm standard at 5, 15, and 40 ºC. All three sondes met the USGS criteria for pH and DO at room temperature, but one sonde exceeded the allowable difference criteria when tested in pH 5.00 buffer and at 40 ºC. The USGS criteria and the technical specifications for turbidity were met by one sonde in standards ranging from 10 to 3,000 nephelometric turbidity units (NTU). A second sonde met the USGS criteria and the technical specifications except in the 3,000-NTU standard, and the third sonde exceeded the USGS calibration criteria in the 10- and 20-NTU standards and the technical specifications in the 20-NTU standard.

Results of the field test showed acceptable performance and revealed that differences in data sample processing between sonde manufacturers may result in variances between the reported measurements when comparing one sonde to another. These variances in data would be more pronounced in dynamic site conditions. The lack of a wiper or other sensor-cleaning device on the DO sensor could prove problematic, and could limit the use of the HL4 to profiling applications or at sites with limited biofouling.

Publication Year 2017
Title Evaluation of the Hydrolab HL4 water-quality sonde and sensors
DOI 10.3133/ofr20171153
Authors Teri T. Snazelle
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2017-1153
Index ID ofr20171153
Record Source USGS Publications Warehouse
USGS Organization Office of Surface Water