Evidence for the interior evolution of Ceres from geologic analysis of fractures
Ceres is the largest asteroid belt object, and the Dawn spacecraft observed Ceres since 2015. Dawn observed two morphologically distinct linear features on Ceres's surface: secondary crater chains and pit chains. Pit chains provide unique insights into Ceres's interior evolution. We interpret pit chains called the Samhain Catenae as the surface expression of subsurface fractures. Using the pit chains' spacings, we estimate that the localized thickness of Ceres's fractured, outer layer is approximately ≥58 km, at least ~14 km greater than the global average. We hypothesize that extensional stresses, induced by a region of upwelling material arising from convection/diapirism, formed the Samhain Catenae. We derive characteristics for this upwelling material, which can be used as constraints in future interior modeling studies. For example, its predicted location coincides with Hanami Planum, a high-elevation region with a negative residual gravity anomaly, which may be surficial evidence for this proposed region of upwelling material.
Citation Information
Publication Year | 2017 |
---|---|
Title | Evidence for the interior evolution of Ceres from geologic analysis of fractures |
DOI | 10.1002/2017GL075086 |
Authors | Jennifer E. C. Scully, Debra Buczkowski, Nico Schmedemann, Carol A. Raymond, Julie C. Castillo-Rogez, Scott King, Michael T. Bland, Anton Ermakov, D.P. O'Brien, S. Marchi, A. Longobardo, C.T. Russell, R.R. Fu, M. Neveu |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Geophysical Research Letters |
Index ID | 70194538 |
Record Source | USGS Publications Warehouse |
USGS Organization | Astrogeology Science Center |