Skip to main content
U.S. flag

An official website of the United States government

Evidence for the interior evolution of Ceres from geologic analysis of fractures

December 5, 2017

Ceres is the largest asteroid belt object, and the Dawn spacecraft observed Ceres since 2015. Dawn observed two morphologically distinct linear features on Ceres's surface: secondary crater chains and pit chains. Pit chains provide unique insights into Ceres's interior evolution. We interpret pit chains called the Samhain Catenae as the surface expression of subsurface fractures. Using the pit chains' spacings, we estimate that the localized thickness of Ceres's fractured, outer layer is approximately ≥58 km, at least ~14 km greater than the global average. We hypothesize that extensional stresses, induced by a region of upwelling material arising from convection/diapirism, formed the Samhain Catenae. We derive characteristics for this upwelling material, which can be used as constraints in future interior modeling studies. For example, its predicted location coincides with Hanami Planum, a high-elevation region with a negative residual gravity anomaly, which may be surficial evidence for this proposed region of upwelling material.

Publication Year 2017
Title Evidence for the interior evolution of Ceres from geologic analysis of fractures
DOI 10.1002/2017GL075086
Authors Jennifer E. C. Scully, Debra Buczkowski, Nico Schmedemann, Carol A. Raymond, Julie C. Castillo-Rogez, Scott King, Michael T. Bland, Anton Ermakov, D.P. O'Brien, S. Marchi, A. Longobardo, C.T. Russell, R.R. Fu, M. Neveu
Publication Type Article
Publication Subtype Journal Article
Series Title Geophysical Research Letters
Index ID 70194538
Record Source USGS Publications Warehouse
USGS Organization Astrogeology Science Center