Skip to main content
U.S. flag

An official website of the United States government

Field measurement of basal forces generated by erosive debris flows

May 14, 2013

It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite differences in appearance and bulk‒flow density. These results demonstrate that debris flows can have strong control on rates of steepland evolution and contribute to a foundation needed for modeling debris‒flow incision stochastically.

Publication Year 2013
Title Field measurement of basal forces generated by erosive debris flows
DOI 10.1002/jgrf.20041
Authors S.W. McCoy, G.E. Tucker, J. W. Kean, J. A. Coe
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research F: Earth Surface
Index ID 70045131
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center