Skip to main content
U.S. flag

An official website of the United States government

Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

October 1, 2004

Chemical and isotopic data were obtained from ground water and surface water throughout the Middle Rio Grande Basin (MRGB), New Mexico, and supplemented with selected data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and City of Albuquerque water-quality database in an effort to refine the conceptual model of ground-water flow in the basin. The ground-water data collected as part of this study include major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, carbon-13 content and carbon-14 activity of dissolved inorganic carbon, sulfur-34 content of dissolved sulfate, tritium, and dissolved atmospheric gases including nitrogen, argon, helium, chlorofluorocarbons, and sulfur hexafluoride from 288 wells and springs in parts of the Santa Fe Group aquifer system. The surface-water data collected as part of this study include monthly measurements of major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, chlorofluorocarbons, and tritium content at 14 locations throughout the basin. Additional data include stable isotope analyses of precipitation and of ground water from City of Albuquerque production wells collected and archived from the early 1980?s, and other data on the chemical and isotopic composition of air, unsaturated zone air, plants, and carbonate minerals from throughout the basin. The data were used to identify 12 sources of water to the basin, map spatial and vertical extents of ground-water flow, map water chemistry in relation to hydrogeologic, stratigraphic, and structural properties of the basin, determine radiocarbon ages of ground water, and reconstruct paleo-environmental conditions in the basin over the past 30,000 years. The data indicate that concentrations of most elements and isotopes generally parallel the predominant north to south direction of ground-water flow. The radiocarbon ages of dissolved inorganic carbon in ground water range from modern (post-1950) to more than 30,000 years before present, and appear to be particularly well defined in the predominantly siliciclastic aquifer system. Major sources of water to the basin include (1) recharge from mountains along the north, east and southwest margins (median age 5,000-9,000 years); (2) seepage from the Rio Grande and Rio Puerco (median age 4,000-8,000 years), and from Abo and Tijeras Arroyos (median age 3,000-9,000 years); (3) inflow of saline water along the southwestern basin margin (median age 20,000 years); and (4) inflow along the northern basin margin that probably represents recharge from the Jemez Mountains during the last glacial period (median age 20,000 years). Water recharged from the Jemez Mountains during the last glacial period occurs at the water table in the central part of the basin and beneath younger recharge along the Rio Grande and the northern mountain front. In some parts of the basin, boundaries between hydrochemical zones appear to be near major faults that may affect ground-water flow. However, in other parts of the basin, such as along the east side of Albuquerque near the Sandia Fault zone, ground-water flow appears to be unaffected by major faults. Upward leakage of saline water occurs along some faults and can be a source of salinity and elevated arsenic concentrations in some ground water. A trough in the modern and predevelopment water table west of Albuquerque is centered along a zone of predominantly late Pleistocene age water through the center of the basin and is flanked and overlain along the trough boundary by water that infiltrated from the Rio Puerco on the west and the Rio Grande to the east. It is suggested that the groundwater trough is a relatively recent transient feature of the Santa Fe Group aquifer system. At Albuquerque, a distinct north-south boundary in deuterium content of ground water marks the division between recharge from the eastern mountain front and that from the Rio Grande.