Skip to main content
U.S. flag

An official website of the United States government

Greater sage-grouse of Grand Teton National Park: where do they roam?

January 1, 2011

Greater sage-grouse (Centrocercus urophasianus) population declines may be caused by range-wide degradation of sagebrush (woody Artemisia spp.) steppe ecosystems. Understanding how greater sage-grouse use the landscape is essential for successful management. We assessed greater sage-grouse habitat selection on a landscape level in Jackson Hole, Wyoming. We used a Geographic Information System (GIS) and radio-collared sage-grouse to compare habitat used and the total available landscape. Greater sage-grouse selected mountain big sagebrush (A. tridentata var. vaseyana) communities or mixed mountain big sagebrush–antelope bitterbrush (Purshia tridentata) communities and avoided low-sagebrush (A. arbuscula) dwarf shrubland. In spring and summer, sage-grouse primarily used sagebrush-dominated habitats on the valley floor and did not concentrate in mesic areas later in the summer as is typical of the species. The diversity of habitats used in winter exceeds that reported in the literature. In winter, Jackson Hole greater sage-grouse moved to hills, where they used various communities in proportion to their availability, including tall deciduous shrublands, cottonwood (Populus angustifolia) stands, exposed hillsides, and aspen (P. tremuloides) stands. Because seasonal habitat selection is not necessarily consistent across populations residing in different landscapes, habitat management should be specific to each population and landscape. This sage-grouse population provides an example that may offer insight into other species with seasonal habitat needs.

Publication Year 2011
Title Greater sage-grouse of Grand Teton National Park: where do they roam?
Authors G.W. Chong, W.C. Wetzel, M.J. Holloran
Publication Type Article
Publication Subtype Journal Article
Series Title Park Science
Index ID 70034997
Record Source USGS Publications Warehouse
USGS Organization Northern Rocky Mountain Science Center