Skip to main content
U.S. flag

An official website of the United States government

Ground-water age and atmospheric tracers: Simulation studies and analysis of field data from the Mirror Lake site, New Hampshire

December 31, 1998

The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water age and CFC-11 transport models to the large-scale ground-water system at Mirror Lake illustrates the similarities between age and chemical transport. Generally, bedrock porosities required to match observed apparent ages from CFC concentrations are high relative to porosities measured on cores. Although matrix diffusion has no effect on steady-state age, it can significantly reduce CFC concentrations in fractured rock in which the effective porosity is low.

Publication Year 1998
Title Ground-water age and atmospheric tracers: Simulation studies and analysis of field data from the Mirror Lake site, New Hampshire
Authors Daniel J. Goode
Publication Type Thesis
Publication Subtype Thesis
Index ID 70189544
Record Source USGS Publications Warehouse
USGS Organization Pennsylvania Water Science Center