Skip to main content
U.S. flag

An official website of the United States government

Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite

January 1, 1987

The heat capacity of synthetic andradite garnet (Ca3Fe2Si3O12) was measured between 9.6 and 365.5 K by cryogenic adiabatic calorimetry and from 340 to 990 K by differential scanning calorimetry. At 298.15 KCop,m and Som are 351.9 ± 0.7 and 316.4 ± 2.0 J/(mol·K), respectively.

Andradite has a λ-peak in Cop,m with a maximum at 11.7 ± 0.2 K which is presumably associated with the antiferromagnetic ordering of the magnetic moments of the Fe3+ ions. The Gibbs free energy of formation,ΔfGom (298.15 K) of andradite is −5414.8 ± 5.5 kJ/mol and was obtained by combining our entropy and heat capacity data with the known breakdown of andradite to pseudowollastonite and hematite at ≈ 1410 to 1438 K. From a reexamination of the calcite + quartz = wollastonite equilibrium data we obtained ΔfHom(298.15 K) = − 1634.5 ± 1.8 kJ/mol for wollastonite.

Between 300 and 1000 K the molar heat capacity of andradite can be represented by the equation Cop,m = 809.24 - 7.025 × 10−2T− 7.403 × 103T−0.5 − 6.789 × 105T−2. We have also used our thermochemical data for andradite to estimate the Gibbs free energy of formation of hedenbergite (CaFeSi2O6) for which we obtained ΔfGom (298.15 K) = −2674.3 ± 5.8 kJ/mol.

Publication Year 1987
Title Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite
DOI 10.1016/0016-7037(87)90271-7
Authors Richard A. Robie, Zhao Bin, Bruce S. Hemingway, Mark D. Barton
Publication Type Article
Publication Subtype Journal Article
Series Title Geochimica et Cosmochimica Acta
Index ID 70014154
Record Source USGS Publications Warehouse