Skip to main content
U.S. flag

An official website of the United States government

Hydrogeology and simulation of groundwater flow in fractured rock in the Newark basin, Rockland County, New York

February 25, 2011

Groundwater in the Newark basin aquifer flows primarily through discrete water-bearing zones parallel to the strike and dip of bedding, whereas flow perpendicular to the strike is restricted, thereby imparting anisotropy to the groundwater flow field. The finite-element model SUTRA was used to represent bedrock structure in the aquifer by spatially varying the orientation of the hydraulic conductivity tensor to reflect variations in the strike and dip of the bedding. Directions of maximum and medium hydraulic conductivity were oriented parallel to the bedding, and the direction of minimum hydraulic conductivity was oriented perpendicular to the bedding. Groundwater flow models were prepared to simulate local flow in the vicinity of the Spring Valley well field and regional flow through the Newark basin aquifer. The Newark basin contains sedimentary rocks deposited as alluvium during the Late Triassic and is one of a series of basins that developed when Mesozoic rifting of the super continent Pangea created the Atlantic Ocean. The westward-dipping basin is filled with interbedded facies of coarse-grained to fine-grained rocks that were intruded by diabase associated with Jurassic volcanism. The Newark basin aquifer is bounded to the north and east by the Palisades sill and to the west by the Ramapo Fault. Although the general dip of bedding is toward the fault, mapping of conglomerate beds indicates the rocks are folded into broad anticlines and synclines. An alternative, more uniform pattern of regional structure, based on interpolated strike and dip measurements from a number of sources, has also been proposed. Two groundwater flow models (A for the former type of bedrock structure and B for the latter type) were developed to represent these alternative depictions of bedrock structure. Transient simulations were calibrated to reproduce measured water-level recoveries in a 9.3 mi&sup2 area surrounding the Spring Valley well field during a 5-day aquifer test in 1992. The models represented a 330-ft thick rock mass divided vertically into 10 equally spaced layers and were calibrated through nonlinear regression. Results of model B best matched the observed water-level recoveries with an estimated hydraulic conductivity of 9.5 ft/day, specific storage of 7.6 x 10 -6 ft -1, and Kmax: Kmin anisotropy ratio (hydraulic conductivity parallel to bedding: perpendicular to bedding) of 72:1. Model error was 50 percent greater in model A because the assumed structure did not match the actual strike of bedding in this area. Steady-state simulations of regional flow through the 85.4-mi2 modeled extent of the Newark basin aquifer represented both the alluvial aquifer beneath the Mawah River and the fractured bedrock. The rock mass was divided into two aquifer units: an upper 500-ft thick unit divided into 10 equally spaced layers through which most groundwater is assumed to flow and a lower unit divided into 7 layers with increasing thickness. Models were calibrated through nonlinear regression to average water levels measured in 140 wells from August 2005 through April 2007. Water levels simulated using the two models were similar and generally matched those observed, and the average recharge rate estimated using both models was 19 inches/year for the simulated period. Estimated transmissivity parallel to the strike of bedding (1,100 ft&sup2/d) was uniform in two transmissivity (T) zones in model A, but in model B the transmissivity of a high T zone (1,600 ft&sup2/d), delineated on the basis of aquifer test data, was slightly greater than in a low T zone (1,300 ft&sup2/d). The Kmax: Kmin anisotropy was estimated to be 58:1 in model A and 410:1 in model B, so the proportion of flow perpendicular to bedding is less in model B than in model A. Distributions of groundwater age simulated with models A and B are similar and indicate that most shallow ground-water (225 ft below the bedrock surface) is 5 t

Publication Year 2011
Title Hydrogeology and simulation of groundwater flow in fractured rock in the Newark basin, Rockland County, New York
DOI 10.3133/sir20105250
Authors Richard M. Yager, Nicholas M. Ratcliffe
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2010-5250
Index ID sir20105250
Record Source USGS Publications Warehouse
USGS Organization New York Water Science Center