Skip to main content
U.S. flag

An official website of the United States government

Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

April 11, 2014

A panel of leading experts (The Old Faithful Science Review Panel) was convened by Yellowstone National Park (YNP) to review and summarize the geological and hydrological understanding that can inform National Park Service management of the Upper Geyser Basin area. We give an overview of present geological and hydrological knowledge of the Old Faithful hydrothermal (hot water) system and related thermal areas in the Upper Geyser Basin. We prioritize avenues for improving our understanding of key knowledge gaps that limit informed decision-making regarding human use in this fragile natural landscape. Lastly, we offer guidelines to minimize impacts to the hydrothermal system that could be used to aid decisions by park management.

Old Faithful sits within the Upper Geyser Basin, an area of abundant hydrothermal activity where boiling waters extend from the surface to significant depth within glacial sediments and underlying volcanic rocks. The geyser systems are directly fed by waters recharged decades to millennia ago, which are surrounded by colder, younger waters. Activity of the geysers is controlled by complex subsurface plumbing with fractures and conduits separated by regions of low permeability. Observations over the past century indicate that the thermal areas and their features are both fragile and highly dynamic. Although Old Faithful has erupted regularly for the past 150 years, it exhibits changes in eruptive behavior over time, and the average interval between eruptions has increased by about 50 percent over the past 50 years. It is clear that human activity has modified the hydrothermal system in the past; conversely, natural features pose ongoing hazards to humans and human infrastructure.

Current (2014) long-term programs to measure heat discharge by chloride-flux monitoring, and more recently by thermal-infrared imaging, are crucial for assessing the status of the hydrothermal system. Complementary studies could include airborne resistivity, environmental tracers, numerical modeling, and greater emphasis on measuring the discharge of water during geyser eruptions. Such data are needed to better understand the subsurface plumbing systems that feed the geysers. Further understanding can be gained through installation of shallow groundwater observation wells, surface geophysical studies, and direct measurement of temperature gradients near the surface. It also is critical to archive existing data from all studies in a manner that will be readily accessible to scientists and decision makers. Monitoring and data collection can be achieved through the YNP geology program, by direct funding to other groups, or by encouraging and facilitating externally funded research.

There are many documented examples at YNP and elsewhere where human infrastructure and natural thermal features have negatively affected each other. Unless action is taken, human conflicts with the Old Faithful hydrothermal system are likely to increase over the coming years. This is partly because of the increase in park visitation over the past decades, but also because the interval between eruptions of Old Faithful has increased, lengthening the time spent (and services needed) for each visitor at Old Faithful. To avoid an increase in visitor impacts, the National Park Service should consider 2 alternate strategies to accommodate people, vehicles, and services in the Upper Geyser Basin, such as shuttle services from staging (parking and dining) areas with little or no recent hydrothermal activity. We further suggest that YNP consider a zone system to guide maintenance and development of infrastructure in the immediate Old Faithful area. A “red” zone includes hydrothermally active land where new development is discouraged and existing infrastructure is modified with great care. An outer “green” zone represents areas where cooler temperatures and less hydrothermal flow are thought to exist, and where development and maintenance could proceed as occurs elsewhere in the park. An intermediate “yellow” zone would require preliminary assessment of subsurface temperatures and gas concentrations to assess suitability for infrastructure development. The panel recommends that YNP management follow the lead of the National Park System Advisory Board Science Committee (2012) by applying the “precautionary principle” when making decisions regarding the interaction of hydrothermal phenomena and park infrastructure in the Old Faithful area and other thermal areas within YNP.

Publication Year 2014
Title Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure
DOI 10.3133/ofr20141058
Authors Duncan Foley, Robert O. Fournier, Henry P. Heasler, Bern Hinckley, Steven E. Ingebritsen, Jacob B. Lowenstern, David D. Susong
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2014-1058
Index ID ofr20141058
Record Source USGS Publications Warehouse
USGS Organization Utah Water Science Center; Volcano Hazards Program; Volcano Science Center