Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003
Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made.
Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux.
Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland.
Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season.
The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he
Citation Information
Publication Year | 2005 |
---|---|
Title | Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003 |
DOI | 10.3133/sir20055178 |
Authors | Leel Knowles, G. G. Phelps, Sandra L. Kinnaman, Edward R. German |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2005-5178 |
Index ID | sir20055178 |
Record Source | USGS Publications Warehouse |