Skip to main content
U.S. flag

An official website of the United States government

Igneous and detrital zircon U-Pb and Lu-Hf geochronology of the late Meso- to Neoproterozoic northwest Botswana rift: Maximum depositional age and provenance of the Ghanzi Group, Kalahari Copperbelt, Botswana and Namibia

October 6, 2018

New igneous and detrital zircon laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) U-Pb geochronology and Lu-Hf isotopic data are presented for the Mesoproterozoic Kgwebe Formation and the unconformably overlying Ghanzi Group in northwestern Botswana. The Makgabana Hills porphyritic rhyolite flow from the Ghanzi area yielded a U-Pb concordia age of 1085.5 ± 4.5 Ma and provides a new maximum depositional age for the unconformably overlying Ghanzi Group. Detrital zircon (n = 448) from the Ghanzi Group yielded a 207Pb/206Pb age distribution with a dominant (70 to 90%) Mesoproterozoic population (∼1450 to ∼1050 Ma), a smaller (5 to 20%) Paleoproterozoic (∼2200 to ∼1700 Ma) population, and a few (n = 4) older (∼3000 Ma to ∼2450 Ma) grains. A maximum depositional age constraint of ∼1060 to ∼1050 Ma was obtained for middle and upper Ghanzi Group based on the weighted-mean 207Pb/206Pb age of the youngest clusters of overlapping zircon ages for each sample.

Initial hafnium ratios (εHfi) and corresponding crustal residence model ages (TCDM) for the Paleoproterozoic zircon populations indicate either fractionation from a chondritic uniform reservoir (CHUR) or mixing between juvenile mantle and older crustal components. Mesoproterozoic zircon with εHfi values between −20 and +15 and TCDM model ages between 3000 and 1200 Ma suggest that the source terrane(s) contained magmatic rocks including both juvenile material and substantially reworked Paleoproterozoic and possibly Archean crust.

Comparison with a compilation of published U-Pb, Lu-Hf, and Sm-Nd data from the Kalahari Craton suggests that the predominant Mesoproterozoic zircon population was derived from the Namaqua Sector, Rehoboth Basement Inlier, Kwando Complex, and Choma-Kalomo Block; some zircon may have had distal sources in adjacent Rodinia landmasses. Both Archean cratonic components and juvenile ∼1200 to ∼1000 Ma magmatic rocks of the Natal Sector and the Maud and Mozambique belts on the eastern margin of the craton are unlikely sources for the detrital zircon based on isotopic composition. Sediment transported from the western margin of the Kalahari Craton entered the northwest Botswana rift and mixed with sediments from the Rehoboth Basement Inlier and Paleo- to Mesoproterozoic terranes that bound the northwest Botswana rift.

Citation Information

Publication Year 2018
Title Igneous and detrital zircon U-Pb and Lu-Hf geochronology of the late Meso- to Neoproterozoic northwest Botswana rift: Maximum depositional age and provenance of the Ghanzi Group, Kalahari Copperbelt, Botswana and Namibia
DOI 10.1016/j.precamres.2018.10.001
Authors Wesley S Hall, Murray Hitzman, Yvette D. Kuiper, Andrew R C Kylander-Clark, Christopher S. Holm-Denoma, Richard J. Moscati, Piret Plink-Bjorklund, Stephen M Enders
Publication Type Article
Publication Subtype Journal Article
Series Title Precambrian Research
Series Number
Index ID 70226708
Record Source USGS Publications Warehouse
USGS Organization Central Mineral and Environmental Resources Science Center