Skip to main content
U.S. flag

An official website of the United States government

Large-scale changes in bloater growth and condition in Lake Huron

October 11, 2016

Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum shrimp Mysis diluviana and zooplankton.

Related Content