Skip to main content
U.S. flag

An official website of the United States government

Level II scour analysis for Bridge 43 (BENNCYDEPO0043) on Depot Street, crossing the Walloomsac River, Bennington, Vermont

January 1, 1997

This report provides the results of a detailed Level II analysis of scour potential at structure
BENNCYDEPO0043 on the Depot Street crossing of the Walloomsac River, Bennington,
Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including
a quantitative analysis of stream stability and scour (U.S. Department of Transportation,
1993). Results of a Level I scour investigation also are included in Appendix E of this
report. A Level I investigation provides a qualitative geomorphic characterization of the
study site. Information on the bridge, gleaned from Vermont Agency of Transportation
(VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is
found in Appendix D.


The site is in the Green Mountain section of the New England physiographic province in
southwestern Vermont. The 30.1-mi2
drainage area is a predominantly rural and forested
basin. The bridge site is located within an urban setting in the Town of Bennington with
buildings and parking lots on overbanks.


In the study area, the Walloomsac River has a straight channel with constructed channel
banks through much of the reach. The channel is located on a delta and has a slope of
approximately 0.02 ft/ft, an average channel top width of 48 ft and an average bank height
of 6 ft. The predominant channel bed material is cobble with a median grain size (D50) of
108 mm (0.356 ft). The geomorphic assessment at the time of the Level I and Level II site
visit on August 5, 1996, indicated that the reach was stable.


The Depot Street crossing of the Walloomsac River is a 46-ft-long, two-lane bridge
consisting of one 40-foot concrete span (Vermont Agency of Transportation, written
communication, December 13, 1995). The bridge is supported by vertical, concrete
abutments with wingwalls. The channel is skewed approximately
5 degrees to the opening and the opening-skew-to-roadway is 15 degrees.


Scour countermeasures at the site include type-2 stone fill (less than 36 inches diameter) at
the upstream end of the upstream right wing wall and type-1 stone fill (less than 12 inches
diameter) along the base of the upstream left wing wall. Downstream banks are protected by
concrete and stone walls. The upstream right bank is protected by alternating type-2 stone
fill and masonry walls. Additional details describing conditions at the site are included in
the Level II Summary and Appendices D and E.


Scour depths and recommended rock rip-rap sizes were computed using the general
guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995).
Total scour at a highway crossing is comprised of three components: 1) long-term
streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction
in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and
abutments). Total scour is the sum of the three components. Equations are available to
compute depths for contraction and local scour and a summary of the results of these
computations follows.


Contraction scour computed for all modelled flows ranged from 0.0 to 4.1 ft.
The worst-case contraction scour occurred at the 500-year discharge.
Computed right abutment scour ranged from 2.9 to 13.4 ft. with the worst-case
scour occurring at the 500-year discharge. Computed left abutment scour
ranged from 5.6 to 16.3 ft. with the worst-case scour also occurring at the 500-year discharge.
Additional information on scour depths and depths to armoring are included in the section titled
“Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables
1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated
assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives “excessively
conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually,
computed scour depths are evaluated in combination with other information including (but
not limited to) historical performance during flood events, the geomorphic stability
assessment, existing scour protection measures, and the results of the hydraulic analyses.
Therefore, scour depths adopted by VTAOT may differ from the computed values
documented herein.

Publication Year 1997
Title Level II scour analysis for Bridge 43 (BENNCYDEPO0043) on Depot Street, crossing the Walloomsac River, Bennington, Vermont
DOI 10.3133/ofr97346
Authors Scott A. Olson
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 97-346
Index ID ofr97346
Record Source USGS Publications Warehouse