Skip to main content
U.S. flag

An official website of the United States government

Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1

January 1, 2011

Moon Mineralogy Mapper (M3) image and spectral reflectance data are combined to analyze mare basalt units in and adjacent to the Orientale multiring impact basin. Models are assessed for the relationships between basin formation and mare basalt emplacement. Mare basalt emplacement on the western nearside limb began prior to the Orientale event as evidenced by the presence of cryptomaria. The earliest post-Orientale-event mare basalt emplacement occurred in the center of the basin (Mare Orientale) and postdated the formation of the Orientale Basin by about 60-100 Ma. Over the next several hundred million years, basalt patches were emplaced first along the base of the Outer Rook ring (Lacus Veris) and then along the base of the Cordillera ring (Lacus Autumni), with some overlap in ages. The latest basalt patches are as young as some of the youngest basalt deposits on the lunar nearside. M3 data show several previously undetected mare patches on the southwestern margins of the basin interior. Regardless, the previously documented increase in mare abundance from the southwest toward the northeast is still prominent. We attribute this to crustal and lithospheric trends moving from the farside to the nearside, with correspondingly shallower density and thermal barriers to basaltic magma ascent and eruption toward the nearside. The wide range of model ages for Orientale mare deposits (3.70-1.66 Ga) mirrors the range of nearside mare ages, indicating that the small amount of mare fill in Orientale is not due to early cessation of mare emplacement but rather to limited volumes of extrusion for each phase during the entire period of nearside mare basalt volcanism. This suggests that nearside and farside source regions may be similar but that other factors, such as thermal and crustal thickness barriers to magma ascent and eruption, may be determining the abundance of surface deposits on the limbs and farside. The sequence, timing, and elevation of mare basalt deposits suggest that regional basin-related stresses exerted control on their distribution. Our analysis clearly shows that Orientale serves as an excellent example of the early stages of the filling of impact basins with mare basalt. Copyright ?? 2011 by the American Geophysical Union.

Publication Year 2011
Title Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1
DOI 10.1029/2010JE003736
Authors J. Whitten, J.W. Head, M. Staid, C.M. Pieters, J. Mustard, R. Clark, J. Nettles, R.L. Klima, L. Taylor
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research E: Planets
Index ID 70034086
Record Source USGS Publications Warehouse
USGS Organization Crustal Geophysics and Geochemistry Science Center