Skip to main content
U.S. flag

An official website of the United States government

Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

January 1, 1999

The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a no-herbicide control, 10 μg/L metolachlor, 25 μg/L metolachlor, 25 μg/L alachlor, and 25 μg/L alachlor plus 25 μg/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (±95% confidence limits) ranged from 33.0 d (±14.1 d) to 46.2 d (±40.0 d), whereas alachlor half-lives ranged from 18.7 d (±3.5 d) to 21.0 d (±6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.

Publication Year 1999
Title Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms
DOI 10.1021/es990686z
Authors William H. Graham, D.W. Graham, Frank DeNoyelles, Val H. Smith, C.K. Larive, E. M. Thurman
Publication Type Article
Publication Subtype Journal Article
Series Title Environmental Science & Technology
Index ID 70021339
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program