Modeling the mid-piacenzian warm climate using the water isotope-enabled Community Earth System Model (iCESM1.2-ITPCAS)
The mid-Piacenzian Warm Period (MPWP, ~ 3.264–3.025 Ma) is the most recent example of a persistently warmer climate in equilibrium with atmospheric CO2 concentrations similar to today. Towards studying patterns and dynamics of a warming climate the MPWP is often compared to today. Following the Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2) protocol we prepare a water isotope-enabled Community Earth System Model (iCESM1.2) simulation that is warmer and wetter than the PlioMIP2 multi-model ensemble (MME). While our simulation resembles PlioMIP2 MME in many aspects we find added insights. (1) Considerable warmth at high latitudes exceeds previous simulations. Polar amplification (PA) is comparable to proxies, enabled by iCESM1.2’s high climate sensitivity and a distinct method of ocean initialization. (2) Major driver of warmth is the downward component of clear-sky surface long-wave radiation (ΔTrlds_clearsky">Δ𝑇rlds_clearsky
Citation Information
Publication Year | 2024 |
---|---|
Title | Modeling the mid-piacenzian warm climate using the water isotope-enabled Community Earth System Model (iCESM1.2-ITPCAS) |
DOI | 10.1007/s00382-024-07304-0 |
Authors | Yong Sun, Baohuang Su, Harry J. Dowsett, Haibin Wu, Jun Hu, Christian Stepanek, Zhongyu Xiong, Xiayu Yuan, Gilles Ramstein |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Climate Dynamics |
Index ID | 70256164 |
Record Source | USGS Publications Warehouse |
USGS Organization | Florence Bascom Geoscience Center |