Skip to main content
U.S. flag

An official website of the United States government

Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

January 1, 2001

Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin.

Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma.

Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma.

A new and different palinspastic reconstruction of a region southwest of the San Andreas Fault Zone is proposed. Our reconstruction incorporates 20° of clockwise rotation of tracts north of the Raymond Fault from the easternmost Santa Monica Mountains to the Vasquez Creek Fault (San Gabriel south branch). We interpret the Vasquez Creek Fault as a reverse and right-lateral tear fault. Right slip on the tear becomes reverse dip slip on the northeast-striking Clamshell-Sawpit fault complex, interpreted as an offset part of the Mount Lukens Fault. This explains the absence of evidence for lateral offset of the Glendora Volcanics and associated younger marine strata where those are broken farther east by the eastern Sierra Madre reverse fault system. About 34 km of right slip is suggested for all breaks of the San Gabriel fault system.

New paleogeographic maps of the Paleogene basin margin and of a Middle Miocene marine embayment and strandline derive in part from our palinspastic reconstruction. These appealingly simple maps fit well with data from the central Los Angeles Basin to the south and southwest.

Publication Year 2001
Title Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California
DOI 10.3133/pp1649
Authors Thane H. McCulloh, Larry A. Beyer, Ronald W. Morin
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Professional Paper
Series Number 1649
Index ID pp1649
Record Source USGS Publications Warehouse
USGS Organization Earthquake Science Center