Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptive-reactive processes
Using one- and two-dimensional homogeneous simulations, this paper addresses challenges associated with sensitivity analysis and parameter estimation for virus transport simulated using sorptive-reactive processes. Head, flow, and conservative- and virus-transport observations are considered. The paper examines the use of (1) observed-value weighting, (2) breakthrough-curve temporal moment observations, and (3) the significance of changes in the transport time-step size. The results suggest that (1) sensitivities using observed-value weighting are more susceptible to numerical solution variability, (2) temporal moments of the breakthrough curve are a more robust measure of sensitivity than individual conservative-transport observations, and (3) the transport-simulation time step size is more important than the inactivation rate in solution and about as important as at least two other parameters, reflecting the ease with which results can be influenced by numerical issues. The approach presented allows more accurate evaluation of the information provided by observations for estimation of parameters and generally improves the potential for reasonable parameter-estimation results. ?? 2004 Elsevier B.V. All rights reserved.
Citation Information
Publication Year | 2005 |
---|---|
Title | Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptive-reactive processes |
DOI | 10.1016/j.jconhyd.2004.10.001 |
Authors | G. Barth, M. C. Hill |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Journal of Contaminant Hydrology |
Index ID | 70029239 |
Record Source | USGS Publications Warehouse |