Skip to main content
U.S. flag

An official website of the United States government

Nutrients, phytoplankton, zooplankton, and macrobenthos

January 1, 2017

Lower trophic levels support the prey fish on which most sport fish depend. Therefore, understanding the production potential of lower trophic levels is integral to the management of Lake Ontario’s fishery resources. Lower trophic-level productivity differs among offshore and nearshore waters. In the offshore, there is concern about the ability of the lake to support Alewife (Table 1) production due to a perceived decline in productivity of phytoplankton and zooplankton whereas, in the nearshore, there is a concern about excessive attached algal production (e.g., Cladophora) associated with higher nutrient concentrations—the oligotrophication of the offshore and the eutrophication of the nearshore (Mills et al. 2003; Holeck et al. 2008; Dove 2009; Koops et al. 2015; Stewart et al. 2016). Even though the collapse of the Alewife population in Lake Huron in 2003 (and the associated decline in the Chinook Salmon fishery) may have been precipitated by a cold winter (Dunlop and Riley 2013), Alewife had not returned to high abundances in Lake Huron as of 2014 (Roseman et al. 2015). Failure of the Alewife population to recover from collapse has been attributed to declines in lower trophic-level production (Barbiero et al. 2011; Bunnell et al. 2014; but see He et al. 2015). In Lake Michigan, concerns of a similar Alewife collapse led to a decrease in the number of Chinook Salmon stocked. If lower trophic-level production declines in Lake Ontario, a similar management action could be considered. On the other hand, in Lake Erie, which supplies most of the water in Lake Ontario, eutrophication is increasing and so are harmful algal blooms. Thus, there is also a concern that nutrient levels and algal blooms could increase in Lake Ontario, especially in the nearshore. Solutions to the two processes of concern—eutrophication in the nearshore and oligotrophication in the offshore—may be mutually exclusive. In either circumstance, fisheries management needs information on the productivity of lower trophic levels in Lake Ontario.

In this chapter, we review the status of lower trophic levels in Lake Ontario with special attention to the current (2008-2013) and previous (2003-2007) reporting periods. During the two reporting periods, three whole-lake surveys of lower trophic levels were conducted: the Lower Trophic Level Assessment (LOLA) in 2003 and 2008 (Makarewicz and Howell 2012; Munawar et al. 2015b) and the Cooperative Science and Management Initiative (CSMI) in 2013. Analyses of the CSMI data are ongoing. In addition to the three one-year sources of information on lower trophic levels, several multi-year sources of information are available, including data from the surveillance program conducted since 1965 by Environment Canada (EC) (Dove 2009), monitoring conducted since 1980 by the U.S. Environmental Protection Agency’s (EPA) Great Lakes National Program Office (GLNPO) (Barbiero et al. 2014; Reavie et al. 2014), sampling for a Bioindex Program at two stations, one offshore and one in the Eastern Basin, assessments of Mysis diluviana (formerly Mysis relicta) conducted since 1980 by Fisheries and Oceans Canada (Johannsson et al. 1998, 2011) and the Ontario Ministry of Natural Resources and Forestry (OMNRF), and monitoring conducted since 1995 by the Biomonitoring Program (BMP) on the New York side of the lake (Holeck et al. 2015b). The BMP is a collaboration of the New York State Department of Environmental Conservation (DEC), U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and Cornell University.

Related Content