Skip to main content
U.S. flag

An official website of the United States government

Observations of rotational motions from local earthquakes using two temporary portable sensors in Waynoka, Oklahoma

October 2, 2018

Characterizing rotational motions from earthquakes at local distances has the potential to improve earthquake engineering and seismic gradiometry by better characterizing the complete seismic wavefield. Applied Technology Associates (ATA) has developed a proto‐seismic magnetohydrodynamic (SMHD) three‐component rotational rate sensor. We deploy two ATA rotational rate sensors at a temporary aftershock station in Waynoka, Oklahoma. From 27 April to 6 June 2017, we recorded the translational and rotational motions of 155 earthquakes of ML≥2.0 within 220 km of the station. Using the recorded events, we compare peak ground rotation rate (⁠ PGω˙ ⁠) with peak ground velocity (PGV) and with peak ground acceleration (PGA). Our results support previously identified potential relationships between the two quantities. We also compare peak ground rotations (⁠ PGω ⁠) as a function of seismic moment and distance. We found that PGω˙ decays with an exponent of approximately −4.0km−1 for both horizontal and vertical components. On the other hand, PGA decays with an exponent of approximately −1.8km−1 for all components. We compute apparent phase velocity directly from the rotational data for both horizontally polarized shear waves (SH; 379m/s with a standard deviation of 114m/s ⁠) and vertically polarized compression and shear waves (P‐SV; 387m/s with a standard deviation of 121m/s ⁠). Finally, by comparing various rotational and translational components, we look at potential implications for estimating local event source parameters. We found that the absolute correlation of nearby earthquakes decays at a rate of approximately 0.39/km for rotational sensors. This decay rate of absolute correlation is faster on translational sensors with a decay rate of 0.44/km. The latter may help in identifying phenomena such as repeating earthquakes by using differences in correlations as a function of distance and how these differences compare with translational correlations.

Publication Year 2018
Title Observations of rotational motions from local earthquakes using two temporary portable sensors in Waynoka, Oklahoma
DOI 10.1785/0120170347
Authors Adam T. Ringler, Robert E. Anthony, David C. Wilson, A.A. Holland, C.-J. Lin
Publication Type Article
Publication Subtype Journal Article
Series Title Bulletin of the Seismological Society of America
Index ID 70201036
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center