David Wilson is the director of the Global Seismographic Network.
Science and Products
Filter Total Items: 40
Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions
Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismomete
Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga
The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed prop
Classifying Worldwide Standardized Seismograph Network records using a simple convolution neural network
The U.S. Geological Survey (USGS) maintains an archive of 189,180 digitized scans of analog seismic records from the World‐Wide Standardized Seismograph Network (WWSSN). Although these scans have been made public, the archive is too large to manually review, and few researchers have utilized large numbers of these records. To facilitate further research using this historical dataset, we develop a
Improved resolution across the Global Seismographic Network: A new era in low-frequency seismology
The Global Seismographic Network (GSN)—a global network of ≈150 very broadband stations—is used by researchers to study the free oscillations of the Earth (≈0.3–10 mHz) following large earthquakes. Normal‐mode observations can provide information about the radial density and anisotropic velocity structure of the Earth (including near the core–mantle boundary), but only when signal‐to‐noise ratios
Seismic background noise levels across the continental United States from USArray Transportable Array: The influence of geology and geography
Since 2004, the most complete estimate of background noise levels across the continental U.S. was attained using 61 broadband seismic stations to calculate power spectral density (PSD) probability density functions. To improve seismic noise estimates across the U.S., we examine vertical component seismic data from the EarthScope USArray Transportable Array seismic network that rolled across the U.
Modeling seismic network detection thresholds using production picking algorithms
Estimating the detection threshold of a seismic network (the minimum magnitude earthquake that can be reliably located) is a critical part of network design and can drive network maintenance efforts. The ability of a station to detect an earthquake is often estimated by assuming the spectral amplitude for an earthquake of a given size, assuming an attenuation relationship, and comparing the predic
Six decades of seismology at South Pole, Antarctica: Current limitations and future opportunities to facilitate new geophysical observations
Seismograms from the South Pole have been important for seismological observations for over six decades by providing (until 2007) the only continuous seismic records from the interior of the Antarctic continent. The South Pole, Antarctica station has undergone many updates over the years, including conversion to a digital recording station as part of the Global Seismographic Network (GSN) in 1991
A review of timing accuracy across the Global Seismographic Network
The accuracy of timing across a seismic network is important for locating earthquakes as well as studies that use phase‐arrival information (e.g., tomography). The Global Seismographic Network (GSN) was designed with the goal of having reported timing be better than 10 ms. In this work, we provide a brief overview of how timing is kept across the GSN and discuss how clock‐quality metrics are embed
Rayleigh wave amplitude uncertainty across the Global Seismographic Network and potential implications for global tomography
The Global Seismographic Network (GSN) is a multiuse, globally distributed seismic network used by seismologists, to both characterize earthquakes and study the Earth’s interior. Most stations in the network have two collocated broadband seismometers, which enable network operators to identify potential metadata and sensor issues. In this study, we investigate the accuracy with which surface waves
Towards understanding relationships between atmospheric pressure variations and long-period horizontal seismic data: A case study
Variations in atmospheric pressure have long been known to introduce noise in long-period (>10 s) seismic records. This noise can overwhelm signals of interest such as normal modes and surface waves. Generally, this noise is most pronounced on the horizontal components where it arises due to tilting of the seismometer in response to changes in atmospheric pressure. Several studies have suggested m
Magnetic field variations in Alaska: Recording space weather events on seismic stations in Alaska
Seismometers are highly sensitive instruments to not only ground motion but also many other nonseismic noise sources (e.g., temperature, pressure, and magnetic field variations). We show that the Alaska component of the Transportable Array is particularly susceptible to recording magnetic storms and other space weather events because the sensors used in this network are unshielded and magnetic flu
Installation and performance of the Albuquerque Seismological Laboratory small-aperture posthole array
The Global Seismographic Network (GSN) has been used extensively by seismologists to characterize large earthquakes and image deep earth structure. While some of the networks design goals have been met, the seismological community has suggested that the incorporation of small-aperture seismic arrays at select sites may improve performance of the network and enable new observations. As a pilot stu
Seismic Network Detection Modeling
This DOI points to the code repository for codes used in David C. Wilson, Emily Wolin, William L. Yeck, Robert E. Anthony, Adam T. Ringler; Modeling Seismic Network Detection Thresholds Using Production Picking Algorithms. Seismological Research Letters 2021; 93 1: doi: https://doi.org/10.1785/0220210192
ASL Sensor Test Suite
This program is used to analyze various aspects of seismic sensor data in order to determine information about their configuration, such as gain and orientation.
Photo Journal: Global Seismographic Network (GSN) Field Engineers Visit the Northernmost Town in the World
In October 2022 GSN field engineers from the Albuquerque Seismic Lab visited the northernmost town in the world, Longyearbyen (Svalbard, Norway) on their way north to GSN station IU-KBS for a station upgrade. GSN station IU-KBS is located in Svalbard, a Norwegian archipelago.
Science and Products
- Publications
Filter Total Items: 40
Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions
Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismometeAtmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga
The 15 January 2022 climactic eruption of Hunga volcano, Tonga, produced an explosion in the atmosphere of a size that has not been documented in the modern geophysical record. The event generated a broad range of atmospheric waves observed globally by various ground-based and spaceborne instrumentation networks. Most prominent was the surface-guided Lamb wave (≲0.01 hertz), which we observed propClassifying Worldwide Standardized Seismograph Network records using a simple convolution neural network
The U.S. Geological Survey (USGS) maintains an archive of 189,180 digitized scans of analog seismic records from the World‐Wide Standardized Seismograph Network (WWSSN). Although these scans have been made public, the archive is too large to manually review, and few researchers have utilized large numbers of these records. To facilitate further research using this historical dataset, we develop aImproved resolution across the Global Seismographic Network: A new era in low-frequency seismology
The Global Seismographic Network (GSN)—a global network of ≈150 very broadband stations—is used by researchers to study the free oscillations of the Earth (≈0.3–10 mHz) following large earthquakes. Normal‐mode observations can provide information about the radial density and anisotropic velocity structure of the Earth (including near the core–mantle boundary), but only when signal‐to‐noise ratiosSeismic background noise levels across the continental United States from USArray Transportable Array: The influence of geology and geography
Since 2004, the most complete estimate of background noise levels across the continental U.S. was attained using 61 broadband seismic stations to calculate power spectral density (PSD) probability density functions. To improve seismic noise estimates across the U.S., we examine vertical component seismic data from the EarthScope USArray Transportable Array seismic network that rolled across the U.Modeling seismic network detection thresholds using production picking algorithms
Estimating the detection threshold of a seismic network (the minimum magnitude earthquake that can be reliably located) is a critical part of network design and can drive network maintenance efforts. The ability of a station to detect an earthquake is often estimated by assuming the spectral amplitude for an earthquake of a given size, assuming an attenuation relationship, and comparing the predicSix decades of seismology at South Pole, Antarctica: Current limitations and future opportunities to facilitate new geophysical observations
Seismograms from the South Pole have been important for seismological observations for over six decades by providing (until 2007) the only continuous seismic records from the interior of the Antarctic continent. The South Pole, Antarctica station has undergone many updates over the years, including conversion to a digital recording station as part of the Global Seismographic Network (GSN) in 1991A review of timing accuracy across the Global Seismographic Network
The accuracy of timing across a seismic network is important for locating earthquakes as well as studies that use phase‐arrival information (e.g., tomography). The Global Seismographic Network (GSN) was designed with the goal of having reported timing be better than 10 ms. In this work, we provide a brief overview of how timing is kept across the GSN and discuss how clock‐quality metrics are embedRayleigh wave amplitude uncertainty across the Global Seismographic Network and potential implications for global tomography
The Global Seismographic Network (GSN) is a multiuse, globally distributed seismic network used by seismologists, to both characterize earthquakes and study the Earth’s interior. Most stations in the network have two collocated broadband seismometers, which enable network operators to identify potential metadata and sensor issues. In this study, we investigate the accuracy with which surface wavesTowards understanding relationships between atmospheric pressure variations and long-period horizontal seismic data: A case study
Variations in atmospheric pressure have long been known to introduce noise in long-period (>10 s) seismic records. This noise can overwhelm signals of interest such as normal modes and surface waves. Generally, this noise is most pronounced on the horizontal components where it arises due to tilting of the seismometer in response to changes in atmospheric pressure. Several studies have suggested mMagnetic field variations in Alaska: Recording space weather events on seismic stations in Alaska
Seismometers are highly sensitive instruments to not only ground motion but also many other nonseismic noise sources (e.g., temperature, pressure, and magnetic field variations). We show that the Alaska component of the Transportable Array is particularly susceptible to recording magnetic storms and other space weather events because the sensors used in this network are unshielded and magnetic fluInstallation and performance of the Albuquerque Seismological Laboratory small-aperture posthole array
The Global Seismographic Network (GSN) has been used extensively by seismologists to characterize large earthquakes and image deep earth structure. While some of the networks design goals have been met, the seismological community has suggested that the incorporation of small-aperture seismic arrays at select sites may improve performance of the network and enable new observations. As a pilot stu - Software
Seismic Network Detection Modeling
This DOI points to the code repository for codes used in David C. Wilson, Emily Wolin, William L. Yeck, Robert E. Anthony, Adam T. Ringler; Modeling Seismic Network Detection Thresholds Using Production Picking Algorithms. Seismological Research Letters 2021; 93 1: doi: https://doi.org/10.1785/0220210192ASL Sensor Test Suite
This program is used to analyze various aspects of seismic sensor data in order to determine information about their configuration, such as gain and orientation. - Science
Photo Journal: Global Seismographic Network (GSN) Field Engineers Visit the Northernmost Town in the World
In October 2022 GSN field engineers from the Albuquerque Seismic Lab visited the northernmost town in the world, Longyearbyen (Svalbard, Norway) on their way north to GSN station IU-KBS for a station upgrade. GSN station IU-KBS is located in Svalbard, a Norwegian archipelago.