Organic-carbon sequestration in soil/sediment of the Mississippi River deltaic plain — Data; landscape distribution, storage, and inventory; accumulation rates; and recent loss, including a post-Katrina preliminary analysis
Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backsw and swamp) in the MRDP.
Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the "short push-core method" proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (37Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data.
Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most consistent and interpretable information for age estimations of soil/sediment deposited during the 1900s. For several cores, isotopic 14C and 137Cs data allowed the 1963-64 nuclear weapons testing (NWT) peak-activity datum to be placed within a few-centimeter depth interval. In some cores, a too old 14C age (when compared to 137Cs and microstratigraphic-marker data) is the probable result of old carbon bound to clay minerals incorporated into the organic soil/sediment. Elemental Pb coupled with Pb source-function data allowed age estimation for soil/sediment that accumulated during the late 1920s through the 1980s. Exotic pollen (for example, Vigna unguiculata and Alternanthera philoxeroides) and other microstratigraphic indicators (for example, carbon spherules) allowed age estimations for marsh soil/sediment deposited during the settlement of New Orleans (1717-20) through the early 1900s.
For this study, MRDP distributary and swamp environments were each represented by only one core, backswamp environment by two cores, all other environments by three or more cores. MRDP core data for the surface meter soil/sediment indicate that (1) coastal marshes, abandoned distributaries, and swamps have regional SOC-storage values >16 kg m-2; (2) swamps and abandoned distributaries have the highest SOC storage values (swamp, 44.8 kg m-2; abandoned distributary, 50.9 kg m-2); (3) fresh-to-brackish marsh environments have the second highest site-specific SOC-storage values; and (4) site-specific marsh SOC storage values decrease as the salinity of the environment increases (fresh-marsh, 36.2 kg m-2; intermediate marsh, 26.2 kg m-2; brackish marsh, 21.5 kg m-2). This inverse relation between salinity and SOC storage is opposite the regional systematic increase in SOC storage with increasing salinity that is evident when SOC storage is mapped by linking pedon data to SSURGO map units (fresh marsh, 47 kg m-2; intermediate marsh, 67 kg m-2; brackish marsh, 75 kg m-2; and salt marsh, 80 kg m-2).
MRDP core data for this study also indicate that levees and backswamp have regional SOC-storage values
Citation Information
| Publication Year | 2007 |
|---|---|
| Title | Organic-carbon sequestration in soil/sediment of the Mississippi River deltaic plain — Data; landscape distribution, storage, and inventory; accumulation rates; and recent loss, including a post-Katrina preliminary analysis |
| DOI | 10.3133/pp1686B |
| Authors | Helaine W. Markewich, Gary R. Buell, Louis D. Britsch, John P. McGeehin, John A. Robbins, John H. Wrenn, Douglas L. Dillon, Terry L. Fries, Nancy R. Morehead |
| Publication Type | Report |
| Publication Subtype | USGS Numbered Series |
| Series Title | Professional Paper |
| Series Number | 1686 |
| Index ID | pp1686B |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Georgia Water Science Center |