Phosphorus amendment reduces hepatic and renal oxidative stress in mallards ingesting lead-contaminated sediments
Lead poisoning of waterfowl has been reported for decades in the Coeur d'Alene River Basin (CDARB) in Idaho as a result of the ingestion of lead-contaminated sediments. This study was conducted to determine whether the addition of phosphoric acid to CDARB sediments would reduce the bioavailability and toxicity of lead to the liver and kidney of mallards (Anas platyrhynchos). Mallards received diets containing 12% clean sediment (controls) or 12% sediment from three different CDARB sites containing 4520, 5390, or 6990 ug/g lead (dry weight) with or without phosphoric acid amendment. Liver and kidney lead concentrations were significantly higher in all CDARB treatment groups and ranged from geometric mean values of 18.2 (liver) and 28.7 (kidney) for the first 2 sites to 22.5 (liver) and 45.6 (kidney) ug/g (wet weight) for the third site. With amendments all liver lead concentrations were reduced 36 to 55%, and all kidney lead concentrations were lowered 54 to 73%. Unamended CDARB sediment from the third site resulted in the following hepatic effects: over 1.6-fold elevation of liver glutathione (reduced form; GSH) concentration, higher GSH S-transferase and oxidized glutathione (GSSG) reductase activities, and lower protein-bound thiols (PBSH) concentration. Renal effects included higher kidney GSH concentrations for all CDARB sites, with over 2.1-fold higher for the third site. Resulting kidney GSSG to GSH ratios were lower at two sites. At the third site, gamma-glutamyl transferase (GGT) activity was elevated, and lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) was 1.7-fold greater. Amendment restored all hepatic variables as well as the renal variables TBARS and GGT so they did not differ from controls. Although amendments of phosphorus substantially reduced the bioavailability of lead and some of the adverse effects, lead concentrations in the tissues of mallards fed the amended sediments were still above those considered to be harmful to waterfowl under the present conditions.
Citation Information
Publication Year | 2006 |
---|---|
Title | Phosphorus amendment reduces hepatic and renal oxidative stress in mallards ingesting lead-contaminated sediments |
DOI | 10.1080/00397910500360210 |
Authors | D. J. Hoffman, G. H. Heinz, D. J. Audet |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Journal of Toxicology and Environmental Health, Part A |
Index ID | 5224656 |
Record Source | USGS Publications Warehouse |
USGS Organization | Patuxent Wildlife Research Center |