Skip to main content
U.S. flag

An official website of the United States government

Pliocene erosional pulse and glacier-landscape feedbacks in the western Alaska Range

August 6, 2018

Pliocene–Pleistocene glaciation modified the topography and erosion of most middle- and high-latitude mountain belts, because the evolution of catchment topography controls long-term glacier mass balance and erosion. Hence, characterizing how erosion rates change during repeated glaciations can help test hypothesized glacier erosion-landscape feedbacks across a range of settings. To better understand how glaciations and landscapes coevolve on geologic timescales, I quantify erosion rates in the glaciated western Alaska Range with low-temperature thermochronometric data and modeling. Zircon (U–Th)/He and apatite fission track data suggest mountain-building was underway by the early Miocene. In contrast, lower-temperature apatite (U–Th)/He age-elevation and grain age-kinetic data indicate that erosion accelerated coincident with regional Pliocene glaciation ca. 4 Ma. Furthermore, erosion rates calculated within an eroding half-space indicate slow erosion at a rate ≤0.3 km/m.y. before 4.2 Ma, an initial pulse of rapid erosion at a rate of 1.0–1.6 km/m.y. during 4.2–2.9 Ma, and more moderate erosion at a rate of 0.4–0.7 km/m.y. since 2.9 Ma. The initial erosion pulse suggests a significant transient landscape adjustment to the introduction of efficient glacial erosion. The subsequent decrease in Pleistocene erosion rates is consistent with a negative feedback between continuing glaciation and glacier size/erosivity: If glacial erosion outpaces rock uplift, glacier erosion decreases over time as topography, mass balance, valley gradients, and ice flux are reduced. These findings imply that in areas of moderate rock uplift rates, the onset of local Plio–Pleistocene glaciation may have been punctuated by an initial pulse of rapid landscape change, after which change became more gradual.

Publication Year 2018
Title Pliocene erosional pulse and glacier-landscape feedbacks in the western Alaska Range
DOI 10.1016/j.epsl.2018.06.009
Authors Richard O. Lease
Publication Type Article
Publication Subtype Journal Article
Series Title Earth and Planetary Science Letters
Index ID 70198472
Record Source USGS Publications Warehouse
USGS Organization Alaska Science Center Geology Minerals