Skip to main content
U.S. flag

An official website of the United States government

Quality of surface waters in the lower Columbia River Basin

January 1, 1965

This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area.

The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal.

The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type.

The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the chemical composition of the streams. The maximum dissolved-solids concentration and hardness of water observed in major irrigation areas were 507 and 262 parts per million, respectively, for the. Walla Walla River near Touchet, Wash.

In terms of the U.S. Salinity Laboratory Staff classification (1954, p. 80), water in most streams in the basin has low salinity and sodium hazards and is suitable for irrigation. A salt-balance problem does exist in the Hermiston-Stanfield, Oreg., area of the Umatilla River basin, and because of poor drainage, improper irrigation practices could cause salt-balance problems in the Willamette River Valley, Oreg., in which irrigation is rapidly increasing.

Pollution by sewage disposal has reached undesirable levels in the Walla Walla River, in the Willamette River from Eugene to Portland, Oreg., and in the Columbia River from Portland to Puget Island. In the lower reaches of the Willamette River, the pollution load from sewage and industrial-waste disposal at times depletes the dissolved oxygen in the water to concentrations below what is considered necessary for aquatic life.

Water in most of the tributaries to the lower Columbia River is of excellent quality and after some treatment could be used for industrial and municipal supplies. The principal treatment required would be disinfection and turbidity removal.

Publication Year 1965
Title Quality of surface waters in the lower Columbia River Basin
DOI 10.3133/wsp1784
Authors John F. Santos
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water Supply Paper
Series Number 1784
Index ID wsp1784
Record Source USGS Publications Warehouse
USGS Organization Oregon Water Science Center