Recent (2003-05) water quality of Barton Springs, Austin, Texas, with emphasis on factors affecting variability
From 2003 to 2005, the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, collected and analyzed water samples from the four springs (orifices) of Barton Springs in Austin, Texas (Upper, Main, Eliza, and Old Mill Springs), with the objective of characterizing water quality. Barton Springs is the major discharge point for the Barton Springs segment of the Edwards aquifer. A three-pronged sampling approach was used: physicochemical properties (including specific conductance and turbidity) were measured continuously; samples were collected from the four springs routinely every 2 weeks (during August-September 2003) to 3 weeks (during June 2004-June 2005) and analyzed for some or all major ions, nutrients, trace elements, soluble pesticides, and volatile organic compounds; and samples were collected from the four springs at more closely spaced intervals during the 2 weeks following two storms and analyzed for the same suite of constituents. Following the two storms, samples also were collected from five of the six major streams that provide recharge to Barton Springs. Spring discharge during both sample collection periods was above average (60 cubic feet per second or greater). Barton Springs was found to be affected by persistent low concentrations of atrazine (an herbicide), chloroform (a drinking-water disinfection by-product), and tetrachloroethene (a solvent). Increased recharge from the major recharging streams resulted in increased calcium, sulfate, atrazine, simazine, and tetrachloroethene concentrations and decreased concentrations of most other major ions, nitrate, and chloroform at one or more of the springs. These changes in concentration demonstrate the influence of water quality in recharging streams on water quality at the springs even during non-stormflow conditions. The geochemical compositions of the four springs indicate that Upper Spring is more contaminated and is influenced by a contributing flow path that is separate from those leading to other springs under all but stormflow conditions. Main, Eliza, and Old Mill Springs share at least one common flow path that contributes contaminants to the three springs. Old Mill Spring, however, is less affected by anthropogenic contaminants than the other springs and receives a greater component of water from a flow path whose geochemistry is influenced by water from the saline zone of the aquifer. At Main Spring, atrazine, simazine, chloroform, and tetrachloroethene concentrations increased following storms, describing breakthrough curves that peaked 2 days following rainfall; at Upper Spring, atrazine and simazine concentrations described breakthrough curves that peaked 1 day following rainfall. At both Main and Upper Springs, additional anthropogenic compounds were detected following storms. The geochemical response of the springs to recharge indicates that much of the transport occurs through conduits. When there is no flow in the recharging streams, ground water advects from the aquifer matrix into the conduits and is transported to the springs. When there is flow in the streams, recharge through the streambeds directly enters the conduit system and is transported to the springs. Following storms, surface runoff recharges through both interstream recharge features and streambeds, delivering runoff-related contaminants to Barton Springs.
Citation Information
Publication Year | 2006 |
---|---|
Title | Recent (2003-05) water quality of Barton Springs, Austin, Texas, with emphasis on factors affecting variability |
DOI | 10.3133/sir20065299 |
Authors | Barbara Mahler, Bradley D. Garner, MaryLynn Musgrove, Amber L. Guilfoyle, Mohan V. Rao |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2006-5299 |
Index ID | sir20065299 |
Record Source | USGS Publications Warehouse |
USGS Organization | Texas Water Science Center |