Skip to main content
U.S. flag

An official website of the United States government

Reconnaissance of land-use sources of pesticides in drinking water, McKenzie River, Oregon

May 31, 2012

The Eugene Water and Electric Board (EWEB) provides water and electricity to the City of Eugene, Oregon, from the McKenzie River. In the spring of 2002, EWEB initiated a pesticide monitoring program in cooperation with the U.S. Geological Survey as part of their Drinking Water Source Protection Plan. Approximately twice yearly pesticide samples were collected from 2002 to 2010 at a suite of sampling sites representing varying land uses in the lower McKenzie River basin. A total of 117 ambient samples were collected from 28 tributary and mainstem sites, including those dominated by forestry, urban, and agricultural activities, as well as the mouths of major tributaries characterized by a mixture of upstream land use. Constituents tested included 175 compounds in filtered water (72 herbicides, 43 insecticides, 10 fungicides, and 36 of their degradation products, as well as 14 pharmaceutical compounds). No attempt was made to sample different site types equivalently; sampling was instead designed primarily to characterize representative storm events during spring and fall runoff conditions in order to assess or confirm the perceived importance of the different site types as sources for pesticides. Sampling was especially limited for agricultural sites, which were only sampled during two spring storm surveys. A total of 43 compounds were detected at least once, with many of these detected only at low concentrations (<0.1 micrograms per liter). Nine compounds were detected at the drinking- water intake, and most of these were reported as estimates less than the laboratory reporting level. Human-health benchmark concentrations were consistently several orders of magnitude higher than detected concentrations at the intake, indicating that pesticide concentrations present a negligible threat to human health. The largest number of pesticide detections occurred during spring storm surveys and primarily were associated with urban stormwater drains. Urban sites also were associated with the highest concentrations, occasionally exceeding 1 microgram per liter. Many of the compounds detected at urban sites were relatively hydrophobic (do not mix easily with water), persistent, and suspected of endocrine disruption. In contrast, forestry compounds were rarely detectable in the McKenzie River, even though forest land predominates in the basin and forestry pesticide use was detected in small tributaries draining forested lands following application. Agricultural pesticide runoff was not well characterized by the limited data available, although a large number of compounds was estimated to be used in the basin and concentrations were moderately high in the few samples collected from small tributaries draining agricultural lands. Results from this analysis indicate that urban pesticide use is potentially an important source for pesticides of concern for drinking water, not limited exclusively to storm conditions. Forestry pesticide use is not considered a likely threat to drinking water quality at the present time (2012). A more complete understanding of agricultural chemicals in runoff in the McKenzie River basin requires further investigation. In addition to evaluating the data collected in this study, a conceptual model describing pesticide contamination in the McKenzie River basin is provided, based on current scientific understanding that is consistent with the data analysis presented in this report. This model is intended to provide a foundation for future monitoring in the basin.

Publication Year 2012
Title Reconnaissance of land-use sources of pesticides in drinking water, McKenzie River, Oregon
DOI 10.3133/sir20125091
Authors Valerie J. Kelly, Chauncey W. Anderson, Karl Morgenstern
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2012-5091
Index ID sir20125091
Record Source USGS Publications Warehouse
USGS Organization Oregon Water Science Center
Was this page helpful?