Landslides, particularly debris flows, have long been a significant cause of damage and destruction to people and property in the Puget Sound region. Following the years of 1996 and 1997, the Federal Emergency Management Agency (FEMA) designated Seattle as a 'Project Impact' city with the goal of encouraging the city to become more disaster resistant to the effects of landslides and other natural hazards. A major recommendation of the Project Impact council was that the city and the U.S. Geological Survey (USGS) collaborate to produce a landslide hazard map of the city. An exceptional data set archived by the city, containing more than 100 years of landslide data from severe storm events, allowed comparison of actual landslide locations with those predicted by slope-stability modeling. We used an infinite-slope analysis, which models slope segments as rigid friction blocks, to estimate the susceptibility of slopes to shallow landslides which often mobilize into debris flows, water-laden slurries that can form from shallow failures of soil and weathered bedrock, and can travel at high velocities down steep slopes. Data used for analysis consisted of a digital slope map derived from recent Light Detection and Ranging (LIDAR) imagery of Seattle, recent digital geologic mapping, and shear-strength test data for the geologic units in the surrounding area. The combination of these data layers within a Geographic Information System (GIS) platform allowed the preparation of a shallow landslide hazard map for the entire city of Seattle.