Skip to main content
U.S. flag

An official website of the United States government

Simulated groundwater flow in the Ogallala and Arikaree aquifers, Rosebud Indian Reservation area, South Dakota – Revisions with data through water year 2008 and simulations of potential future scenarios

July 9, 2010

The Ogallala and Arikaree aquifers are important water resources in the Rosebud Indian Reservation area and are used extensively for irrigation, municipal, and domestic water supplies. Drought or increased withdrawals from the Ogallala and Arikaree aquifers in the Rosebud Indian Reservation area have the potential to affect water levels in these aquifers. This report documents revisions and recalibration of a previously published three-dimensional, numerical groundwater-flow model for this area. Data for a 30-year period (water years 1979 through 2008) were used in steady-state and transient numerical simulations of groundwater flow. In the revised model, revisions include (1) extension of the transient calibration period by 10 years, (2) the use of inverse modeling for steady-state calibration, (3) model calibration to base flow for an additional four surface-water drainage basins, (4) improved estimation of transient aquifer recharge, (5) improved delineation of vegetation types, and (6) reduced cell size near large capacity water-supply wells. In addition, potential future scenarios were simulated to assess the potential effects of drought and increased groundwater withdrawals.

The model comprised two layers: the upper layer represented the Ogallala aquifer and the lower layer represented the Arikaree aquifer. The model’s grid had 168 rows and 202 columns, most of which were 1,640 feet (500 meters) wide, with narrower rows and columns near large water-supply wells. Recharge to the Ogallala and Arikaree aquifers occurs from precipitation on the outcrop areas. The average recharge rates used for the steady-state simulation were 2.91 and 1.45 inches per year for the Ogallala aquifer and Arikaree aquifer, respectively, for a total rate of 255.4 cubic feet per second (ft3/s). Discharge from the aquifers occurs through evapotranspiration, discharge to streams as base flow and spring flow, and well withdrawals. Discharge rates for the steady-state simulation were 171.3 ft3/s for evapotranspiration, 74.4 ft3/s for net outflow to streams and springs, and 11.6 ft3/s for well withdrawals. Estimated horizontal hydraulic conductivity used for the numerical model ranged from 0.2 to 84.4 feet per day (ft/d) in the Ogallala aquifer and from 0.1 to 4.3 ft/d in the Arikaree aquifer. A uniform vertical hydraulic conductivity value of 4.2x10-4 ft/d was estimated for the Ogallala aquifer. Vertical hydraulic conductivity was estimated for five zones in the Arikaree aquifer and ranged from 8.8x10-5 to 3.7 ft/d. Average rates of recharge, maximum evapotranspiration, and well withdrawals were included in the steady-state simulation, whereas the time-varying rates were included in the transient simulation.

Inverse modeling techniques were used for steady-state model calibration. These methods were designed to estimate parameter values that are, statistically, the most likely set of values to result in the smallest differences between simulated and observed hydraulic heads and base-flow discharges. For the steady-state simulation, the root mean square error for simulated hydraulic heads for all 383 wells was 27.3 feet. Simulated hydraulic heads were within ±50 feet of observed values for 93 percent of the wells. The potentiometric surfaces of the two aquifers calculated by the steady-state simulation established initial conditions for the transient simulation. For the transient simulation, the difference between the simulated and observed means for hydrographs was within ±40 feet for 98 percent of 44 observation wells.

A sensitivity analysis was used to examine the response of the calibrated steady-state model to changes in model parameters including horizontal and vertical hydraulic conductivity, evapotranspiration, recharge, and riverbed conductance. The model was most sensitive to recharge and maximum evapotranspiration and least sensitive to riverbed and spring conductances.

To simulate a potential future drought scenario, a synthetic recharge record was created, the mean of which was equal to 64 percent of the average estimated recharge rate for the 30-year calibration period. This synthetic recharge record was used to simulate the last 20 years of the calibration period under drought conditions. Compared with results of the calibrated model, decreases in hydraulic-head values for the drought scenario at the end of the simulation period were as much as 39 feet for the Ogallala aquifer. To simulate the effects of potential increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 30-year calibration period for the last 20 years of the calibration period. Compared with results of the calibrated model, decreases in hydraulic-head values for the scenario of increased pumping at the end of the simulation period were as much as 13 feet for the Ogallala aquifer.

This numerical model is suitable as a tool to help understand the flow system, to help confirm that previous estimates of aquifer properties were reasonable, and to estimate aquifer properties in areas without data. The model also is useful to help assess the effects of drought and increases in pumping by simulations of these scenarios, the results of which are not precise but may be considered when making water management decisions.

Publication Year 2010
Title Simulated groundwater flow in the Ogallala and Arikaree aquifers, Rosebud Indian Reservation area, South Dakota – Revisions with data through water year 2008 and simulations of potential future scenarios
DOI 10.3133/sir20105105
Authors Andrew J. Long, Larry D. Putnam
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2010-5105
Index ID sir20105105
Record Source USGS Publications Warehouse
USGS Organization South Dakota Water Science Center; Dakota Water Science Center
Was this page helpful?