As part of the Great Lakes and Mississippi River Interbasin Study, the U.S. Army Corps of Engineers (USACE) is conducting an assessment of the vulnerability of the Chicago Area Waterway System and Des Plaines River to Asian carp (specifically, Hypophthalmichthys nobilis (bighead carp) and Hypophthalmichthys molitrix (silver carp)) spawning and recruitment. As part of this assessment, the USACE requested the help of the U.S. Geological Survey in predicting the fate and transport of Asian carp eggs hypothetically spawned at the electric dispersal barrier on the Chicago Sanitary and Ship Canal and downstream of the Brandon Road Lock and Dam on the Des Plaines River under dry weather flow and high water temperature conditions. The Fluvial Egg Drift Simulator (FluEgg) model predicted that approximately 80 percent of silver carp eggs spawned near the electric dispersal barrier would hatch within the Lockport and Brandon Road pools (as close as 3.6 miles downstream of the barrier) and approximately 82 percent of the silver carp eggs spawned near the Brandon Road Dam would hatch in the Des Plaines River (as close as 1.6 miles downstream from the gates of Brandon Road Lock). Extension of the FluEgg model to include the fate and transport of larvae until gas bladder inflation—the point at which the larvae begin to leave the drift—suggests that eggs spawned at the electric dispersal barrier would reach the gas bladder inflation stage primarily within the Dresden Island Pool, and those spawned at the Brandon Road Dam would reach this stage primarily within the Marseilles and Starved Rock Pools.
Citation Information
Publication Year | 2016 |
---|---|
Title | Simulation of hypothetical Asian carp egg and larvae development and transport in the Lockport, Brandon Road, Dresden Island, and Marseilles Pools of the Illinois Waterway by use of the Fluvial Egg Drift Simulator (FluEgg) model |
DOI | 10.3133/ofr20161011 |
Authors | Elizabeth A. Murphy, Tatiana Garcia, P. Ryan Jackson, James J. Duncker |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Open-File Report |
Series Number | 2016-1011 |
Index ID | ofr20161011 |
Record Source | USGS Publications Warehouse |
USGS Organization | Illinois Water Science Center |