Understanding aquatic animal virus survival and trafficking and its role in risk assessment
The stability of infectious agents in different media and under different physical and chemical environments has been extensively studied for some viruses and virtually ignored for others. Gaps in our knowledge are due in part to difficulties in reproducing virus «life cycles» and determination if the agent is in fact inactive. Additionally, isolation of the agent under certain conditions can present significant challenges. Studies on the susceptibility of viruses to different physical or chemical parameters have often been conducted under artificial conditions and quantitative data on the rate of inactivation are lacking for many agents. Using infectious hematopoietic necrosis virus (IHNV) as an example, survival was assessed under different environmental conditions. Three IHNV isolates that exhibited antigenic and genetic differences were diluted either in freshwater collected from a spring, after it passed through a fish farm, or the river that received water from the fish farm. Each treatment was incubated at 15o C in a water bath and samples were removed daily. Virus concentrations were determined by plaque assay on EPC cells. Virus suspended in spring water survived longer than virus incubated in water obtained from a fish farm or the river. Virus suspended in river water exhibited a 99.99% reduction in virus concentrations in less than 24 h. Survival of IHNV was also evaluated at different temperatures. A 1982 isolate appeared to be less temperature sensitive than isolates collected in 1990. A preliminary study was also conducted to determine the genetic similarity of IHNV isolates present downstream in a river system from the state of Idaho. Isolates were analyzed using the RNase protection assay (RPA) and by nucleotide sequencing of RT-PCR products of specific isolates. Genetic typing of IHNV allows monitoring of virus traffic and may provide insight into the epizootiology and mechanisms of virus spread. These results illustrate the complexity in evaluating virus survival and trafficing and using this sort of information in risk assessment.
Citation Information
Publication Year | 2001 |
---|---|
Title | Understanding aquatic animal virus survival and trafficking and its role in risk assessment |
Authors | S. LaPatra, R. Troyer, W. Shewmaker, G. Jones, Gael Kurath |
Publication Type | Conference Paper |
Publication Subtype | Conference Paper |
Index ID | 70192226 |
Record Source | USGS Publications Warehouse |
USGS Organization | Western Fisheries Research Center |