Skip to main content
U.S. flag

An official website of the United States government

Updated paleomagnetic pole from Cretaceous plutonic rocks of the Sierra Nevada, California: Tectonic displacement of the Sierra Nevada block

January 1, 2011

We report remanent magnetization measurements from 13 sites in Cretaceous plutonic rocks in the northern Sierra Nevada (38°N–39.5°N). By increasing the number of available paleomagnetic sites, the new data tighten constraints on the displacement history of the Sierra Nevada block and its pre-extensional position relative to interior North America. We collected samples in freshly exposed outcrops along four highway transects. The rocks include diorite, granodiorite, and tonalite with potassium-argon ages (hornblende) ranging from 100 Ma to 83 Ma. By combining our results with previous paleomagnetic determinations from the central and southern Sierra Nevada (excluding sites from the rotated southern tip east of the White Wolf–Kern Canyon fault system), we find a mean paleomagnetic pole of 70.5°N, 188.2°E, A95 = 2.6° (N = 26, Fisher concentration parameter, K = 118). Thermal demagnetization indicates that the characteristic remanence is generally unblocked in a narrow range within 35 °C of the Curie temperature of pure magnetite. Small apparent polar wander during the Cretaceous normal-polarity superchron, plus prolonged acquisition of remanence at the site level, may account for the low dispersion of virtual geomagnetic poles and relatively large K value. Tilt estimates based on overlapping sediments, stream gradients, and thermochronology of the Sierra Nevada plutons vary from 0° to 3° down to the southwest. Without tilt correction, the mean paleomagnetic pole for the Sierra Nevada is essentially coincident with the North American reference pole during the Cretaceous stillstand (125 Ma to 80 Ma). At 95% confidence, the apparent latitude shift is 1.1° ± 3.0° (positive northward), and the apparent rotation is negligible, 0.0° ± 4.7°. Correcting for each degree of tilt, which is limited to 3° on geologic evidence, increases the rotation anomaly 2.2° counterclockwise, while the apparent latitude shift remains unchanged.

Publication Year 2011
Title Updated paleomagnetic pole from Cretaceous plutonic rocks of the Sierra Nevada, California: Tectonic displacement of the Sierra Nevada block
DOI 10.1130/L142.1
Authors John W. Hillhouse, Sherman Gromme
Publication Type Article
Publication Subtype Journal Article
Series Title Lithosphere
Index ID 70036582
Record Source USGS Publications Warehouse
USGS Organization Geology and Geophysics Science Center
Was this page helpful?