Water-the Nation's Fundamental Climate Issue A White Paper on the U.S. Geological Survey Role and Capabilities
Of all the potential threats posed by climatic variability and change, those associated with water resources are arguably the most consequential for both society and the environment (Waggoner, 1990). Climatic effects on agriculture, aquatic ecosystems, energy, and industry are strongly influenced by climatic effects on water. Thus, understanding changes in the distribution, quantity and quality of, and demand for water in response to climate variability and change is essential to planning for and adapting to future climatic conditions. A central role of the U.S. Geological Survey (USGS) with respect to climate is to document environmental changes currently underway and to develop improved capabilities to predict future changes. Indeed, a centerpiece of the USGS role is a new Climate Effects Network of monitoring sites. Measuring the climatic effects on water is an essential component of such a network (along with corresponding effects on terrestrial ecosystems).
The USGS needs to be unambiguous in communicating with its customers and stakeholders, and with officials at the Department of the Interior, that although modeling future impacts of climate change is important, there is no more critical role for the USGS in climate change science than that of measuring and describing the changes that are currently underway. One of the best statements of that mission comes from a short paper by Ralph Keeling (2008) that describes the inspiration and the challenges faced by David Keeling in operating the all-important Mauna Loa Observatory over a period of more than four decades. Ralph Keeling stated: 'The only way to figure out what is happening to our planet is to measure it, and this means tracking changes decade after decade and poring over the records.'
There are three key ideas that are important to the USGS in the above-mentioned sentence. First, to understand what is happening requires measurement. While models are a tool for learning and testing our understanding, they are not a substitute for observations. The second key idea is that measurement needs to be done over a period of many decades. When viewing hydrologic records over time scales of a few years to a few decades, trends commonly appear. However, when viewed in the context of many decades to centuries, these short-term trends are recognized as being part of much longer term oscillations. Thus, while we might want to initiate monitoring of important aspects of our natural resources, the data that will prove to be most useful in the next few years are those records that already have long-term continuity. USGS streamflow and groundwater level data are excellent examples of such long-term records. These measured data span many decades, follow standard protocols for collection and quality assurance, and are stored in a database that provides access to the full period of record.
The third point from the Keeling quote relates to the notion of ?poring over the records.? Important trends will not generally jump off the computer screen at us. Thoughtful analyses are required to get past a number of important but confounding influences in the record, such as the role of seasonal variation, changes in water management, or influences of quasi-periodic phenomena, such as El Ni?o-Southern Oscillation (ENSO) or the Pacific Decadal Oscillation (PDO). No organization is better situated to pore over the records than the USGS because USGS scientists know the data, quality-assure the data, understand the factors that influence the data, and have the ancillary information on the watersheds within which the data are collected.
To fulfill the USGS role in understanding climatic variability and change, we need to continually improve and strengthen two of our key capabilities: (1) preserving continuity of long-term water data collection and (2) analyzing and interpreting water data to determine how the Nation's water resources are changing.
Understanding change in water resources
Citation Information
Publication Year | 2010 |
---|---|
Title | Water-the Nation's Fundamental Climate Issue A White Paper on the U.S. Geological Survey Role and Capabilities |
DOI | 10.3133/cir1347 |
Authors | Harry F. Lins, Robert M. Hirsch, Julie Kiang |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Circular |
Series Number | 1347 |
Index ID | cir1347 |
Record Source | USGS Publications Warehouse |
USGS Organization | U.S. Geological Survey |